Homeostatic control of lymphocyte survival: potential origins and implications (original) (raw)
References
Evan, G.I. & Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature411, 342–348 (2001). CASPubMed Google Scholar
Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C.M. Involvement of the bcl-2 gene in human follicular lymphoma. Science228, 1440–1443 (1985). CASPubMed Google Scholar
McDonnell, T.J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell57, 79–88 (1989). CASPubMed Google Scholar
Strasser, A., Harris, A.W., Bath, M.L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature348, 331–333 (1990). CASPubMed Google Scholar
Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature335, 440–442 (1988). CASPubMed Google Scholar
Desagher, S. & Martinou, J.C. Mitochondria as the central control point of apoptosis. Trends Cell Biol.10, 369–377 (2000). CASPubMed Google Scholar
Liu, X., Kim, C.N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86, 147–157 (1996). CASPubMed Google Scholar
Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell90, 405–413 (1997). CASPubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000). CASPubMed Google Scholar
Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102, 43–53 (2000). CASPubMed Google Scholar
Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell8, 613–621 (2001). CASPubMed Google Scholar
Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397, 441–446 (1999). CASPubMed Google Scholar
Li, L.Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature412, 95–99 (2001). CASPubMed Google Scholar
Gross, A., McDonnell, J.M. & Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev.13, 1899–1911 (1999). CASPubMed Google Scholar
Huang, D.C. & Strasser, A. BH3-only proteins-essential initiators of apoptotic cell death. Cell103, 839–842 (2000). CASPubMed Google Scholar
Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol.1, 107–111 (2000). CAS Google Scholar
Nakajima, H., Noguchi, M. & Leonard, W.J. Role of the common cytokine receptor γ chain (γc) in thymocyte selection. Immunol. Today21, 88–94 (2000). CASPubMed Google Scholar
Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-xL . Cell87, 619–628 (1996). CASPubMed Google Scholar
Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell3, 413–422 (1999). CASPubMed Google Scholar
Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science286, 1358–1362 (1999). CASPubMed Google Scholar
Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L. & Coffer, P.J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol.10, 1201–1204 (2000). CASPubMed Google Scholar
Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999). CASPubMed Google Scholar
Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature415, 922–926 (2002). CASPubMed Google Scholar
von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med.181, 1519–1526 (1995). CASPubMed Google Scholar
von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity7, 147–154 (1997). CASPubMed Google Scholar
Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity10, 525–535 (1999). CASPubMed Google Scholar
Qin, J.Z. et al. Interleukin-7 and interleukin-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood98, 2778–2783 (2001). CASPubMed Google Scholar
Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naïve T cells. J. Immunol.167, 6869–6876 (2001). CASPubMed Google Scholar
Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1−/− mice. Cell89, 1011–1019 (1997). CASPubMed Google Scholar
Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell89, 1033–1041 (1997). CASPubMed Google Scholar
Khaled, A.R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S.K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA96, 14476–14481 (1999). CASPubMedPubMed Central Google Scholar
Dumon, S. et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene18, 4191–4199 (1999). CASPubMed Google Scholar
Gu, H. et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol. Cell. Biol.20, 7109–7120 (2000). CASPubMedPubMed Central Google Scholar
Guthridge, M.A. et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol. Cell6, 99–108 (2000). CASPubMed Google Scholar
Gu, H. et al. Essential role for Gab2 in the allergic response. Nature412, 186–190 (2001). CASPubMed Google Scholar
Heymann, D. & Rousselle, A.V. gp130 Cytokine family and bone cells. Cytokine12, 1455–1468 (2000). CASPubMed Google Scholar
Teague, T.K., Marrack, P., Kappler, J.W. & Vella, A.T. IL-6 rescues resting mouse T cells from apoptosis. J. Immunol.158, 5791–5796 (1997). CASPubMed Google Scholar
Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity10, 105–115 (1999). CASPubMed Google Scholar
Chen, R.H., Chang, M.C., Su, Y.H., Tsai, Y.T. & Kuo, M.L. Interleukin-6 inhibits transforming growth factor-β-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J. Biol. Chem.274, 23013–23019 (1999). CASPubMed Google Scholar
Teague, T.K. et al. Activation-induced inhibition of interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling. J. Exp. Med.191, 915–926 (2000). CASPubMedPubMed Central Google Scholar
Narimatsu, M. et al. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol. Cell. Biol.21, 6615–6625 (2001). CASPubMedPubMed Central Google Scholar
Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity14, 523–534 (2001). CASPubMed Google Scholar
Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol.19, 595–621 (2001). CASPubMed Google Scholar
Shaw, A.C., Swat, W., Ferrini, R., Davidson, L. & Alt, F.W. Activated Ras signals developmental progression of recombinase-activating gene (RAG)-deficient pro-B lymphocytes. J. Exp. Med.189, 123–129 (1999). CASPubMedPubMed Central Google Scholar
Nagaoka, H. et al. Ras mediates effector pathways responsible for pre-B cell survival, which is essential for the developmental progression to the late pre-B cell stage. J. Exp. Med.192, 171–182 (2000). CASPubMedPubMed Central Google Scholar
Lam, K.P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell90, 1073–1083 (1997). CASPubMed Google Scholar
Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl. Acad. Sci. USA98, 8744–8749 (2001). CASPubMedPubMed Central Google Scholar
Sprent, J. Burnet oration. T-cell survival and the role of cytokines. Immunol. Cell. Biol.79, 199–206 (2001). CASPubMed Google Scholar
Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature369, 327–329 (1994). CASPubMed Google Scholar
Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunol.2, 325–332 (2001). CAS Google Scholar
Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol.2, 37–44 (2001). CAS Google Scholar
Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity13, 313–322 (2000). CASPubMed Google Scholar
Millward, T.A., Zolnierowicz, S. & Hemmings, B.A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci.24, 186–191 (1999). CASPubMed Google Scholar
Schwartz, M.A. Integrin signaling revisited. Trends Cell Biol.11, 466–470 (2001). CASPubMed Google Scholar
Delcommenne, M. et al. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA95, 11211–11216 (1998). CASPubMedPubMed Central Google Scholar
Perez, O.D. et al. Activation of the PKB/AKT pathway by ICAM-2. Immunity16, 51–65 (2002). CASPubMed Google Scholar
Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). CASPubMed Google Scholar
de Fougerolles, A.R., Stacker, S.A., Schwarting, R. & Springer, T.A. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med.174, 253–267 (1991). CASPubMed Google Scholar
Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev.15, 2922–2933 (2001). CASPubMed Google Scholar
Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol.1, E209–216 (1999). CASPubMed Google Scholar
Whetton, A.D. & Dexter, T.M. Effect of haematopoietic cell growth factor on intracellular ATP levels. Nature303, 629–631 (1983). CASPubMed Google Scholar
Whetton, A.D., Bazill, G.W. & Dexter, T.M. Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J.3, 409–413 (1984). CASPubMedPubMed Central Google Scholar
Kan, O., Baldwin, S.A. & Whetton, A.D. Apoptosis is regulated by the rate of glucose transport in an IL-3- dependent haemopoietic cell line. Biochem. Soc. Trans.22, S275 (1994). Google Scholar
Rathmell, J.C., Vander Heiden, M.G., Harris, M.H., Frauwirth, K.A. & Thompson, C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell6, 683–692 (2000). CASPubMed Google Scholar
Vander Heiden, M.G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol.21, 5899–5912 (2001). CASPubMedPubMed Central Google Scholar
Deprez, J., Vertommen, D., Alessi, D.R., Hue, L. & Rider, M.H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem.272, 17269–17275 (1997). CASPubMed Google Scholar
Marsin, A.S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol.10, 1247–1255 (2000). CASPubMed Google Scholar
Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev.15, 1406–1418 (2001). CASPubMedPubMed Central Google Scholar
Nicholls, D.G. & Ferguson, S.J. in Bioenergetics2 23–34 (Harcourt Brace Jovanovich, London, 1992). Google Scholar
Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem.276, 12041–12048 (2001). CASPubMed Google Scholar
Hsu, Y.T., Wolter, K.G. & Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA94, 3668–3672 (1997). CASPubMedPubMed Central Google Scholar
Hsu, Y.T. & Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem.273, 10777–10783 (1998). CASPubMed Google Scholar
Suzuki, M., Youle, R.J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell103, 645–654 (2000). CASPubMed Google Scholar
Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science270, 96–99 (1995). CASPubMed Google Scholar
Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. & Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev.15, 1481–1486 (2001). CASPubMedPubMed Central Google Scholar
Cheng, E.H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell8, 705–711 (2001). CASPubMed Google Scholar
Brazil, D.P. & Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci.26, 657–664 (2001). CASPubMed Google Scholar
Hill, M.M. et al. A role for protein kinase Bβ/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol. Cell. Biol.19, 7771–7781 (1999). CASPubMedPubMed Central Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). CASPubMed Google Scholar
Kane, L.P., Shapiro, V.S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol.9, 601–604 (1999). CASPubMed Google Scholar
Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V. & Baldwin, A.S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science281, 1680–1683 (1998). CASPubMed Google Scholar
Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell- intrinsic death machinery. Cell91, 231–241 (1997). CASPubMed Google Scholar
Siegel, R.M., Chan, F.K., Chun, H.J. & Lenardo, M.J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol.1, 469–474 (2000). CAS Google Scholar
Schreck, R., Rieber, P. & Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J.10, 2247–2258 (1991). CASPubMedPubMed Central Google Scholar
Matsuyama, S., Llopis, J., Deveraux, Q.L., Tsien, R.Y. & Reed, J.C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol.2, 318–325 (2000). CASPubMed Google Scholar
Vander Heiden, M.G., Chandel, N.S., Schumacker, P.T. & Thompson, C.B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell3, 159–167 (1999). CASPubMed Google Scholar
Pierce, S.B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev.15, 672–686 (2001). CASPubMedPubMed Central Google Scholar
Smaili, S.S., Hsu, Y.T., Sanders, K.M., Russell, J.T. & Youle, R.J. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ.8, 909–920 (2001). CASPubMed Google Scholar