Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility (original) (raw)

References

  1. Mobley, H.L. et al. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 64, 5332–5340 (1996).
    CAS PubMed PubMed Central Google Scholar
  2. Feldman, M. et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51 (1998).
    CAS PubMed PubMed Central Google Scholar
  3. Schmitt, C.K. et al. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625 (2001).
    Article CAS Google Scholar
  4. Kavermann, H. et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J. Exp. Med. 197, 813–822 (2003).
    Article CAS Google Scholar
  5. Chua, K.L., Chan, Y.Y. & Gan, Y.H. Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71, 1622–1629 (2003).
    Article CAS Google Scholar
  6. Robertson, J.M. et al. Lack of flagella disadvantages Salmonella enterica serovar Enteritidis during the early stages of infection in the rat. J. Med. Microbiol. 52, 91–99 (2003).
    Article Google Scholar
  7. Ikeda, J.S. et al. Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect. Immun. 69, 3021–3030 (2001).
    Article CAS Google Scholar
  8. Dietrich, C., Heuner, K., Brand, B.C., Hacker, J. & Steinert, M. Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect. Immun. 69, 2116–2122 (2001).
    Article CAS Google Scholar
  9. Van Asten, F.J., Hendriks, H.G., Koninkx, J.F., Van der Zeijst, B.A. & Gaastra, W. Inactivation of the flagellin gene of Salmonella enterica serotype enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol. Lett. 185, 175–179 (2000).
    Article CAS Google Scholar
  10. Dibb-Fuller, M.P., Allen-Vercoe, E., Thorns, C.J. & Woodward, M.J. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031 (1999).
    Article CAS Google Scholar
  11. Hackett, J., Attridge, S. & Rowley, D. Oral immunization with live, avirulent fla+ strains of Salmonella protects mice against subsequent oral challenge with Salmonella typhimurium. J. Infect. Dis. 157, 78–84 (1988).
    Article CAS Google Scholar
  12. Cookson, B.T. & Bevan, M.J. Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J. Immunol. 158, 4310–4319 (1997).
    CAS PubMed Google Scholar
  13. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).
    Article CAS Google Scholar
  14. Hayashi, F., Means, T.K. & Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660–2669 (2003).
    Article CAS Google Scholar
  15. Gewirtz, A.T. et al. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109 (2001).
    Article CAS Google Scholar
  16. Means, T.K., Hayashi, F., Smith, K.D., Aderem, A. & Luster, A.D. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170, 5165–5175 (2003).
    Article CAS Google Scholar
  17. Ogushi, K. et al. Salmonella enteritidis FliC (flagella filament protein) induces human b-defensin-2 mRNA production by Caco-2 cells. J. Biol. Chem. 276, 30521–30526 (2001).
    Article CAS Google Scholar
  18. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).
    Article CAS Google Scholar
  19. Samakovlis, C., Asling, B., Boman, H.G., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes—an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).
    Article CAS Google Scholar
  20. Gomez-Gomez, L., Bauer, Z. & Boller, T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155–1163 (2001).
    Article CAS Google Scholar
  21. Samatey, F.A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001).
    Article CAS Google Scholar
  22. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).
    Article CAS Google Scholar
  23. Berg, H.C. & Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).
    Article CAS Google Scholar
  24. McDermott, P.F., Ciacci-Woolwine, F., Snipes, J.A. & Mizel, S.B. High-affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect. Immun. 68, 5525–5529 (2000).
    Article CAS Google Scholar
  25. Steiner, T.S., Nataro, J.P., Poteet-Smith, C.E., Smith, J.A. & Guerrant, R.L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest. 105, 1769–1777 (2000).
    Article CAS Google Scholar
  26. Eaves-Pyles, T.D., Wong, H.R., Odoms, K. & Pyles, R.B. Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167, 7009–7016 (2001).
    Article CAS Google Scholar
  27. Donnelly, M.A. & Steiner, T.S. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456–40461 (2002).
    Article CAS Google Scholar
  28. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).
    Article CAS Google Scholar
  29. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
    Article CAS Google Scholar
  30. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).
    Article CAS Google Scholar
  31. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).
    Article CAS Google Scholar
  32. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163–2167 (2000).
    Article CAS Google Scholar
  33. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237–9242 (2001).
    Article CAS Google Scholar
  34. Takeshita, F. et al. Cutting edge: role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).
    Article CAS Google Scholar
  35. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P.S. & Ulevitch, R.J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129–21135 (2001).
    Article CAS Google Scholar
  36. Viriyakosol, S., Tobias, P.S., Kitchens, R.L. & Kirkland, T.N. MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 10, 10 (2001).
    Google Scholar
  37. Burnens, A.P. et al. The flagellin N-methylase gene fliB and an adjacent serovar-specific IS200 element in Salmonella typhimurium. Microbiology 143, 1539–1547 (1997).
    Article CAS Google Scholar
  38. Arora, S.K., Bangera, M., Lory, S. & Ramphal, R. A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA 98, 9342–9347 (2001).
    Article CAS Google Scholar
  39. Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001).
    Article CAS Google Scholar
  40. McSorley, S.J., Ehst, B.D., Yu, Y. & Gewirtz, A.T. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J. Immunol. 169, 3914–3919 (2002).
    Article CAS Google Scholar
  41. Manoil, C. & Bailey, J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J. Mol. Biol. 267, 250–263 (1997).
    Article CAS Google Scholar
  42. Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974).
    Article CAS Google Scholar
  43. Yamashita, I. et al. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat. Struct. Biol. 5, 125–132 (1998).
    Article CAS Google Scholar
  44. Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types of 'straight' flagellins. Nature 286, 628–630 (1980).
    Article CAS Google Scholar
  45. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. & Madara, J.L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).
    Article CAS Google Scholar
  46. Gewirtz, A.T. et al. Salmonella typhimurium induces epithelial IL-8 expression via Ca2+-mediated activation of the NF-kB pathway. J. Clin. Invest. 105, 79–92 (2000).
    Article CAS Google Scholar
  47. Hajjar, A.M., Ernst, R.K., Tsai, J.H., Wilson, C.B. & Miller, S.I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3, 354–359 (2002).
    Article CAS Google Scholar
  48. Felix, G., Duran, J.D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).
    Article CAS Google Scholar
  49. Underhill, D.M., Ozinsky, A., Smith, K.D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96, 14459–14463 (1999).
    Article CAS Google Scholar
  50. Smith, K.D., Valenzuela, A., Vigna, J.L., Aalbers, K. & Lutz, C.T. Unwanted mutations in PCR mutagenesis: avoiding the predictable. PCR Methods Appl. 2, 253–257 (1993).
    Article CAS Google Scholar
  51. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).
    Article CAS Google Scholar

Download references