T cell killing does not require the formation of a stable mature immunological synapse (original) (raw)

References

  1. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375– 396 (2001).
    Article CAS Google Scholar
  2. Delon, J. & Germain, R.N. Information transfer at the immunological synapse. Curr. Biol. 10, R923– 933 (2000).
    Article CAS Google Scholar
  3. Davis, M.M. et al. Dynamics of cell surface molecules during T cell recognition. Annu. Rev. Biochem. 72, 717– 742 (2003).
    Article CAS Google Scholar
  4. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565– 571 (1996).
    Article CAS Google Scholar
  5. Kimachi, K., Croft, M. & Grey, H.M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310– 3317 (1997).
    Article CAS Google Scholar
  6. Demotz, S., Grey, H.M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249, 1028– 1030 (1990).
    Article CAS Google Scholar
  7. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574– 576 (1990).
    Article CAS Google Scholar
  8. Christinck, E.R., Luscher, M.A., Barber, B.H. & Williams, D.B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67– 70 (1991).
    Article CAS Google Scholar
  9. Reay, P.A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626– 5634 (2000).
    Article CAS Google Scholar
  10. Brower, R.C. et al. Minimal requirements for peptide mediated activation of CD8+ CTL. Mol. Immunol. 31, 1285– 1293 (1994).
    Article CAS Google Scholar
  11. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845– 849 (2002).
    Article CAS Google Scholar
  12. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82– 86 (1998).
    Article CAS Google Scholar
  13. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221– 227 (1999).
    Article CAS Google Scholar
  14. Dustin, M.L., Singer, K.H., Tuck, D.T. & Springer, T.A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon γ and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167, 1323– 1240 (1988).
    Article CAS Google Scholar
  15. Shimaoka, M. et al. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc. Natl. Acad. Sci. USA 98, 6009– 6014 (2001).
    Article CAS Google Scholar
  16. Lu, C. et al. An isolated, surface-expressed I domain of the integrin αLβ2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Proc. Natl. Acad. Sci. USA 98, 2387– 2392 (2001).
    Article CAS Google Scholar
  17. Potter, T.A., Rajan, T.V., Dick, R.F., 2nd & Bluestone, J.A. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature 337, 73– 75 (1989).
    Article CAS Google Scholar
  18. Purbhoo, M.A. et al. The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor ζ chain. J. Biol. Chem. 276, 32786– 32792 (2001).
    Article CAS Google Scholar
  19. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42– 47 (2002).
    Article Google Scholar
  20. van der Merwe, P.A. Do T cell receptors do it alone? Nat. Immunol. 3, 1122– 1123 (2002).
    Article CAS Google Scholar
  21. Potter, T.A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 98, 12624– 12629 (2001).
    Article CAS Google Scholar
  22. Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349– 1352 (2000).
    Article CAS Google Scholar
  23. Wülfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266– 2269 (1998).
    Article Google Scholar
  24. Princiotta, M.F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343– 354 (2003).
    Article CAS Google Scholar
  25. Yewdell, J.W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 11, 294– 297 (2001).
    Article CAS Google Scholar
  26. Alam, S.M. et al. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10, 227– 237 (1999).
    Article CAS Google Scholar
  27. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251– 261 (2000).
    Article CAS Google Scholar
  28. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429– 434 (2002).
    Article CAS Google Scholar
  29. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173– 181 (1999).
    Article CAS Google Scholar
  30. Kojima, H., Toda, M. & Sitkovsky, M.V. Comparison of Fas- versus perforin-mediated pathways of cytotoxicity in TCR- and Thy-1-activated murine T cells. Int. Immunol. 12, 365– 374 (2000).
    Article CAS Google Scholar
  31. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917– 1921 (1996).
    Article CAS Google Scholar
  32. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749– 755 (2003).
    Article CAS Google Scholar
  33. Huang, J.F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952– 954 (1999).
    Article CAS Google Scholar
  34. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751– 761 (2001).
    Article CAS Google Scholar
  35. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392– 8396 (1993).
    Article CAS Google Scholar
  36. Wülfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA 95, 6302– 6307 (1998).
    Article Google Scholar

Download references