Evasion of innate immunity by parasitic protozoa (original) (raw)
Pearce, E.J., Scott, P.A. & Sher, A. in Fundamental immunology (ed. Paul, W.) 1271–1294 (Lippincott-Raven, Philadelphia, 1999). Google Scholar
Borst, P. et al. Antigenic variation in trypanosomes. Arch. Med. Res.27, 379–388 (1996). CASPubMed Google Scholar
Nash, T.E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol.45, 585–590 (2002). ArticleCASPubMed Google Scholar
Kyes, S., Horrocks, P. & Newbold, C. Antigenic variation at the infected red cell surface in malaria. Annu. Rev. Microbiol.55, 673–707 (2001). ArticleCASPubMed Google Scholar
Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med.194, 1497–506 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hunter, C. & Sher, A. in Immunology of Infectious Diseases (eds. Kaufman, S., Sher, A. & Ahmed, R.) 111–126 (ASM Press, Washington DC, 2001). Google Scholar
Joiner, K.A. Complement evasion by bacteria and parasites. Annu. Rev. Microbiol.42, 201–230 (1988). ArticleCASPubMed Google Scholar
Norris, K.A., Bradt, B., Cooper, N.R. & So, M. Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor. J. Immunol.147, 2240–2247 (1991). CASPubMed Google Scholar
Norris, K.A. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun.66, 2460–2465 (1998). ArticleCASPubMedPubMed Central Google Scholar
Puentes, S.M., Da Silva, R.P., Sacks, D.L., Hammer, C.H. & Joiner, K.A. Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. J. Immunol.145, 4311–4316 (1990). CASPubMed Google Scholar
McConville, M.J., Turco, S.J., Ferguson, M.A. & Sacks, D.L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J.11, 3593–3600 (1992). ArticleCASPubMedPubMed Central Google Scholar
Brittingham, A. et al. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J. Immunol.155, 3102–3111 (1995). CASPubMed Google Scholar
Mosser, D.M. & Edelson, P.J. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol.135, 2785–2789 (1985). CASPubMed Google Scholar
Spath, G.F. et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA97, 9258–9263 (2000). ArticleCASPubMedPubMed Central Google Scholar
Joshi, P.B., Kelly, B.L., Kamhawi, S., Sacks, D.L. & McMaster, W.R. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol. Biochem. Parasitol.120, 33–40 (2002). ArticleCASPubMed Google Scholar
Raper, J., Portela, M.P., Lugli, E., Frevert, U. & Tomlinson, S. Trypanosome lytic factors: novel mediators of human innate immunity. Curr. Opin. Microbiol.4, 402–408 (2001). ArticleCASPubMed Google Scholar
Hajduk, S.L. et al. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J. Biol. Chem.264, 5210–5217 (1989). ArticleCASPubMed Google Scholar
Smith, A.B., Esko, J.D. & Hajduk, S.L. Killing of trypanosomes by the human haptoglobin-related protein. Science268, 284–286 (1995). ArticleCASPubMed Google Scholar
Raper, J., Fung, R., Ghiso, J., Nussenzweig, V. & Tomlinson, S. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun.67, 1910–1916 (1999). ArticleCASPubMedPubMed Central Google Scholar
De Greef, C. & Hamers, R. The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol.68, 277–284 (1994). ArticleCASPubMed Google Scholar
Xong, H.V. et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell95, 839–846 (1998). ArticleCASPubMed Google Scholar
Milner, J.D. & Hajduk, S.L. Expression and localization of serum resistance associated protein in Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol.104, 271–283 (1999). ArticleCASPubMed Google Scholar
Sibley, L.D. & Andrews, N.W. Cell invasion by un-palatable parasites. Traffic1, 100–106 (2000). ArticleCASPubMed Google Scholar
Mordue, D.G., Desai, N., Dustin, M. & Sibley, L.D. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J. Exp. Med.190, 1783–1792 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lingelbach, K. & Joiner, K.A. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J. Cell Sci.111, 1467–1475 (1998). ArticleCASPubMed Google Scholar
Andrews, N.W., Abrams, C.K., Slatin, S.L. & Griffiths, G.A _T. cruzi_-secreted protein immunologically related to the complement component C9: evidence for membrane pore–forming activity at low pH. Cell61, 1277–1287 (1990). ArticleCASPubMed Google Scholar
Hall, B.F., Webster, P., Ma, A.K., Joiner, K.A. & Andrews, N.W. Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm. J. Exp. Med.176, 313–325 (1992). ArticleCASPubMed Google Scholar
Ming, M., Ewen, M.E. & Pereira, M.E. Trypanosome invasion of mammalian cells requires activation of the TGF-β signaling pathway. Cell82, 287–296 (1995). ArticleCASPubMed Google Scholar
Rittig, M.G. & Bogdan, C. _Leishmania_-host-cell interaction: complexities and alternative views. Parasitol. Today16, 292–297 (2000). ArticleCASPubMed Google Scholar
Alexander, J. & Russell, D.G. The interaction of Leishmania species with macrophages. Adv. Parasitol.31, 175–254 (1992). ArticleCASPubMed Google Scholar
Courret, N. et al. Biogenesis of _Leishmania_-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J. Cell Sci.115, 2303–2316 (2002). ArticleCASPubMed Google Scholar
Desjardins, M. & Descoteaux, A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med.185, 2061–2068 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dermine, J.F., Scianimanico, S., Prive, C., Descoteaux, A. & Desjardins, M. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol.2, 115–126 (2000). ArticleCASPubMed Google Scholar
Ilg, T., Demar, M. & Harbecke, D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J. Biol. Chem.276, 4988–4997 (2001). ArticleCASPubMed Google Scholar
Nathan, C. & Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA97, 8841–8848 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schwarzer, E. et al. Impairment of macrophage functions after ingestion of _Plasmodium falciparum_-infected erythrocytes or isolated malarial pigment. J. Exp. Med.176, 1033–1041 (1992). ArticleCASPubMed Google Scholar
Schwarzer, E., Turrini, F., Giribaldi, G., Cappadoro, M. & Arese, P. Phagocytosis of P. falciparum malarial pigment hemozoin by human monocytes inactivates monocyte protein kinase C. Biochim. Biophys. Acta1181, 51–54 (1993). ArticleCASPubMed Google Scholar
Moore, K.J., Labrecque, S. & Matlashewski, G. Alteration of Leishmania donovani infection levels by selective impairment of macrophage signal transduction. J. Immunol.150, 4457–4465 (1993). CASPubMed Google Scholar
Olivier, M., Brownsey, R.W. & Reiner, N.E. Defective stimulus-response coupling in human monocytes infected with Leishmania donovani is associated with altered activation and translocation of protein kinase C. Proc. Natl. Acad. Sci. USA89, 7481–7485 (1992). ArticleCASPubMedPubMed Central Google Scholar
Descoteaux, A., Matlashewski, G. & Turco, S.J. Inhibition of macrophage protein kinase C-mediated protein phosphorylation by Leishmania donovani lipophosphoglycan. J. Immunol.149, 3008–3015 (1992). CASPubMed Google Scholar
McDowell, M.A. & Sacks, D.L. Inhibition of host cell signal transduction by Leishmania: observations relevant to the selective impairment of IL-12 responses. Curr. Opin. Microbiol.2, 438–443 (1999). ArticleCASPubMed Google Scholar
Piedrafita, D. et al. Regulation of macrophage IL-12 synthesis by Leishmania phosphoglycans. Eur. J. Immunol.29, 235–244 (1999). ArticleCASPubMed Google Scholar
Nandan, D. & Reiner, N.E. Attenuation of γ interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infect. Immun.63, 4495–4500 (1995). ArticleCASPubMedPubMed Central Google Scholar
Blanchette, J., Racette, N., Faure, R., Siminovitch, K.A. & Olivier, M. _Leishmania_-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-γ-triggered Jak2 activation. Eur J. Immunol.29, 3737–3744 (1999). ArticleCASPubMed Google Scholar
Forget, G. et al. Role of host phosphotyrosine phosphatase SHP-1 in the development of murine _Leishmania_sis. Eur. J. Immunol.31, 3185–3196 (2001). ArticleCASPubMed Google Scholar
Giese, N.A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med.186, 1535–1546 (1997). ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. Down-regulation of IL-12 p40 gene in _Plasmodium berghei_-infected mice. J. Immunol.167, 235–241 (2001). ArticleCASPubMed Google Scholar
Butcher, B.A., Kim, L., Johnson, P.F. & Denkers, E.Y. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB. J. Immunol.167, 2193–2201 (2001). ArticleCASPubMed Google Scholar
Shapira, S., Speirs, K., Gerstein, A., Caamano, J. & Hunter, C.A. Suppression of NF-κB activation by infection with Toxoplasma gondii. J. Infect. Dis.185 (Suppl.) 66–72 (2002). Article Google Scholar
Dobbin, A., Smith, N.C. & Jonson, A.M. Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-κB and nitric oxide. J. Immunol.169, 958–965 (2002). ArticleCASPubMed Google Scholar
Neyer, L.E. et al. Role of interleukin-10 in regulation of T-cell-dependent and T-cell- independent mechanisms of resistance to Toxoplasma gondii. Infect. Immun.65, 1675–1682 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gazzinelli, R.T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol.157, 798–805 (1996). CASPubMed Google Scholar
Omer, F.M., Kurtzhals, J.A. & Riley, E.M. Maintaining the immunological balance in parasitic infections: a role for TGF-β? Parasitol. Today16, 18–23 (2000). ArticleCASPubMed Google Scholar
Kane, M.M. & Mosser, D.M. The role of IL-10 in promoting disease progression in _Leishmania_sis. J. Immunol.166, 1141–1147 (2001). ArticleCASPubMed Google Scholar
Barral, A. et al. Transforming growth factor β as a virulence mechanism for Leishmania braziliensis. Proc. Natl. Acad. Sci. USA90, 3442–3446 (1993). ArticleCASPubMedPubMed Central Google Scholar
Luder, C.G., Gross, U. & Lopes, M.F. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol.17, 480–486 (2001). ArticleCASPubMed Google Scholar
Moore, K.J., Turco, S.J. & Matlashewski, G. Leishmania donovani infection enhances macrophage viability in the absence of exogenous growth factor. J. Leukoc. Biol.55, 91–98 (1994). ArticleCASPubMed Google Scholar
Nash, P.B. et al. _Toxoplasma gondii_-infected cells are resistant to multiple inducers of apoptosis. J. Immunol.160, 1824–1830 (1998). CASPubMed Google Scholar
Freire-de-Lima, C.G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature403, 199–203 (2000). ArticleCASPubMed Google Scholar
von Stebut, E., Belkaid, Y., Jakob, T., Sacks, D.L. & Udey, M.C. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med.188, 1547–1552 (1998). ArticleCASPubMedPubMed Central Google Scholar
Marovich, M.A., McDowell, M.A., Thomas, E.K. & Nutman, T.B. IL-12p70 production by _Leishmania major_-harboring human dendritic cells is a CD40/CD40 ligand-dependent process. J. Immunol.164, 5858–5865 (2000). ArticleCASPubMed Google Scholar
Gorak, P.M., Engwerda, C.R. & Kaye, P.M. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol.28, 687–695 (1998). ArticleCASPubMed Google Scholar
Subauste, C.S. & Wessendarp, M. Human dendritic cells discriminate between viable and killed Toxoplasma gondii tachyzoites: dendritic cell activation after infection with viable parasites results in CD28 and CD40 ligand signaling that controls IL-12-dependent and -independent T cell production of IFN-γ. J. Immunol.165, 1498–505 (2000). ArticleCASPubMed Google Scholar
Scanga, C.A. et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J. Immunol.168, 5997–6001 (2002). ArticleCASPubMed Google Scholar
Urban, B.C. & Roberts, D.J. Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells. Curr. Opin. Immunol.14, 458–465 (2002). ArticleCASPubMed Google Scholar
Urban, B.C. et al. _Plasmodium falciparum_-infected erythrocytes modulate the maturation of dendritic cells. Nature400, 73–77 (1999). ArticleCASPubMed Google Scholar
Urban, B.C., Willcox, N. & Roberts, D.J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl. Acad. Sci. USA98, 8750–8755 (2001). ArticleCASPubMedPubMed Central Google Scholar
Newbold, C. et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg.57, 389–398 (1997). ArticleCASPubMed Google Scholar
Rogerson, S.J. et al. Cytoadherence characteristics of _Plasmodium falciparum_-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am. J. Trop. Med. Hyg.61, 467–472 (1999). ArticleCASPubMed Google Scholar
Van Overtvelt, L. et al. Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules. Infect. Immun.67, 4033–4040 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brodskyn, C. et al. Glycoinositolphospholipids from Trypanosoma cruzi interfere with macrophages and dendritic cell responses. Infect. Immun.70, 3736–3743 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jebbari, H., Stagg, A.J., Davidson, R.N. & Knight, S.C. Leishmania major promastigotes inhibit dendritic cell motility in vitro. Infect. Immun.70, 1023–1026 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ponte-Sucre, A., Heise, D. & Moll, H. Leishmania major lipophosphoglycan modulates the phenotype and inhibits migration of murine Langerhans cells. Immunology104, 462–467 (2001). ArticleCASPubMedPubMed Central Google Scholar
Konecny, P. et al. Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T cell proliferation in vitro. Eur. J. Immunol.29, 1803–1811 (1999). ArticleCASPubMed Google Scholar
Qi, H., Popov, V. & Soong, L. _Leishmania amazonensis_-dendritic cell interactions in vitro and the priming of parasite-specific CD4+ T cells in vivo. J. Immunol.167, 4534–4542 (2001). ArticleCASPubMed Google Scholar
Bennett, C.L., Misslitz, A., Colledge, L., Aebischer, T. & Blackburn, C.C. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur. J. Immunol.31, 876–883 (2001). ArticleCASPubMed Google Scholar
McDowell, M.A., Marovich, M., Lira, R., Braun, M. & Sacks, D. Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infect. Immun.70, 3994–4001 (2002). ArticleCASPubMedPubMed Central Google Scholar
Turco, S.J., Spath, G.F. & Beverley, S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol.17, 223–226 (2001). ArticleCASPubMed Google Scholar
Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity11, 637–647 (1999). ArticleCASPubMed Google Scholar
Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C.N. & Sher, A. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunol.3, 76–82 (2002). ArticleCAS Google Scholar