Natural selection of tumor variants in the generation of “tumor escape” phenotypes (original) (raw)
Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA95, 7556–7561 (1998). CASPubMedPubMed Central Google Scholar
Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature413, 165–171 (2001). CASPubMedPubMed Central Google Scholar
Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science294, 605–609 (2001). CASPubMed Google Scholar
Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med.196, 129–134 (2002). CASPubMedPubMed Central Google Scholar
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). CASPubMed Google Scholar
Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med.192, 755–760 (2000). CASPubMedPubMed Central Google Scholar
Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med.195, 161–169 (2002). CASPubMedPubMed Central Google Scholar
Stoler, D.L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. USA96, 15121–15126 (1999). CASPubMedPubMed Central Google Scholar
Johnsen, A.K. et al. Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int. J. Cancer91, 366–372 (2001). CASPubMed Google Scholar
Zheng, P., Sarma, S., Guo, Y. & Liu, Y. Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res.59, 3461–3467 (1999). CASPubMed Google Scholar
Restifo, N.P. et al. Loss of functional β2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst.88, 100–108 (1996). CASPubMed Google Scholar
Garrido, F. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today18, 89–95 (1997). CASPubMed Google Scholar
Algarra, I., Collado, A. & Garrido, F. Altered MHC class I antigens in tumors. Int. J. Clin. Lab. Res.27, 95–102 (1997). CASPubMed Google Scholar
Cabrera, T. et al. High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum. Immunol.50, 127–134 (1996). CASPubMed Google Scholar
Hicklin, D.J. et al. β2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J. Clin. Invest.101, 2720–2729 (1998). CASPubMedPubMed Central Google Scholar
Restifo, N.P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med.177, 265–272 (1993). CASPubMed Google Scholar
Korkolopoulou, P., Kaklamanis, L., Pezzella, F., Harris, A.L. & Gatter, K.C. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br. J. Cancer73, 148–153 (1996). CASPubMedPubMed Central Google Scholar
Sanda, M.G. et al. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst.87, 280–285 (1995). CASPubMed Google Scholar
Seliger, B. et al. Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Exp. Hematol.25, 608–614 (1997). CASPubMed Google Scholar
Ramal, L.M. et al. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum. Immunol.61, 1001–1012 (2000). CASPubMed Google Scholar
Versteeg, R. et al. Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J. Exp. Med.170, 621–635 (1989). CASPubMed Google Scholar
Soong, T.W. & Hui, K.M. Locus-specific transcriptional control of HLA genes. J. Immunol.149, 2008–2020 (1992). CASPubMed Google Scholar
Marincola, F.M. et al. Locus-specific analysis of human leukocyte antigen class I expression in melanoma cell lines. J. Immunother. Emphasis. Tumor Immunol.16, 13–23 (1994). CASPubMedPubMed Central Google Scholar
Koopman, L.A., van Der, S., Giphart, M.J. & Fleuren, G.J. Human leukocyte antigen class I gene mutations in cervical cancer. J. Natl. Cancer Inst.91, 1669–1677 (1999). CASPubMed Google Scholar
Porgador, A., Mandelboim, O., Restifo, N.P. & Strominger, J.L. Natural killer cell lines kill autologous β2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA94, 13140–13145 (1997). CASPubMedPubMed Central Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). CASPubMed Google Scholar
Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA96, 6879–6884 (1999). CASPubMedPubMed Central Google Scholar
Garrido, F. & Algarra, I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res.83, 117–158 (2001). CASPubMed Google Scholar
Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med.195, 327–333 (2002). CASPubMedPubMed Central Google Scholar
Galea-Lauri, J. et al. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol.163, 62–70 (1999). CASPubMed Google Scholar
Carbone, E. et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J. Exp. Med.185, 2053–2060 (1997). CASPubMedPubMed Central Google Scholar
Takeda, K. et al. CD27-mediated activation of murine NK cells. J. Immunol.164, 1741–1745 (2000) CASPubMed Google Scholar
Apte, R.S., Mayhew, E. & Niederkorn, J.Y. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest. Ophthalmol. Vis. Sci.38, 1277–1282 (1997). CASPubMed Google Scholar
de Vries, T.J. et al. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res.57, 3223–3229 (1997). CASPubMed Google Scholar
Hofbauer, G.F., Kamarashev, J., Geertsen, R., Boni, R. & Dummer, R. Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res.8, 337–343 (1998). CASPubMed Google Scholar
Jager, E. et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer66, 470–476 (1996). CASPubMed Google Scholar
Lee, K.H. et al. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J. Immunol.161, 4183–4194 (1998). CASPubMed Google Scholar
Riker, A. et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery126, 112–120 (1999). CASPubMed Google Scholar
Cormier, J.N. et al. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int. J. Cancer80, 781–790 (1999). CASPubMedPubMed Central Google Scholar
Schreiber, H., Wu, T.H., Nachman, J. & Kast, W.M. Immunodominance and tumor escape. Semin. Cancer Biol.12, 25–31 (2002). CASPubMed Google Scholar
Straus, S.E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood98, 194–200 (2001). CASPubMed Google Scholar
Davidson, W.F., Giese, T. & Fredrickson, T.N. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med.187, 1825–1838 (1998). CASPubMedPubMed Central Google Scholar
Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med.7, 94–100 (2001) CASPubMed Google Scholar
Salvesen, G.S. & Dixit, V.M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA96, 10964–10967 (1999). CASPubMedPubMed Central Google Scholar
Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature388, 190–195 (1997). CASPubMed Google Scholar
Medema, J.P., de Jong, J., van Hall, T., Melief, C.J. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med.190, 1033–1038 (1999). CASPubMedPubMed Central Google Scholar
Landowski, T.H., Qu, N., Buyuksal, I., Painter, J.S. & Dalton, W.S. Mutations in the Fas antigen in patients with multiple myeloma. Blood90, 4266–4270 (1997). CASPubMed Google Scholar
Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood92, 3018–3024 (1998). CASPubMed Google Scholar
Shin, M.S. et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am. J. Pathol.154, 1785–1791 (1999). CASPubMedPubMed Central Google Scholar
Shin, M.S. et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene21, 4129–4136 (2002). CASPubMed Google Scholar
Shin, M.S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood99, 4094–4099 (2002). CASPubMed Google Scholar
Medema, J.P. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA98, 11515–11520 (2001). CASPubMedPubMed Central Google Scholar
Hersey, P. & Zhang, X.D. How melanoma cells evade trail-induced apoptosis. Nature Rev. Cancer1, 142–150 (2001). CAS Google Scholar
Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science248, 1349–1356 (1990). CASPubMed Google Scholar
Chen, L. et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med.179, 523–532 (1994). CASPubMed Google Scholar
Toi, M. et al. Clinical significance of the determination of angiogenic factors. Eur. J. Cancer32, 2513–2519 (1996). Google Scholar
Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells. J. Immunol.160, 1224–1232 (1998). CASPubMed Google Scholar
Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M. & Kaibara, N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br. J. Cancer78, 1573–1577 (1998). CASPubMedPubMed Central Google Scholar
Almand, B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res.6, 1755–1766 (2000). CASPubMed Google Scholar
Girolomoni, G. & Ricciardi-Castagnoli, P. Dendritic cells hold promise for immunotherapy. Immunol. Today18, 102–104 (1997). CASPubMed Google Scholar
De Smedt, T. et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol.27, 1229–1235 (1997). CASPubMed Google Scholar
Sharma, S. et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J. Immunol.163, 5020–5028 (1999). CASPubMed Google Scholar
Ludewig, B. et al. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-α, but strongly enhanced by interleukin-10. Eur. J. Immunol.25, 1943–1950 (1995). CASPubMed Google Scholar
Carbone, E. et al. Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol.29, 4022–4029 (1999). CASPubMed Google Scholar
Yue, F.Y. et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int. J. Cancer71, 630–637 (1997). CASPubMed Google Scholar
Salazar-Onfray, F. et al. Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J. Immunol.159, 3195–3202 (1997). CASPubMed Google Scholar
Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood90, 2390–2397 (1997). CASPubMed Google Scholar
Ristimaki, A., Honkanen, N., Jankala, H., Sipponen, P. & Harkonen, M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res.57, 1276–1280 (1997). CASPubMed Google Scholar
Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res.55, 3785–3789 (1995). CASPubMed Google Scholar
Wolff, H. et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res.58, 4997–5001 (1998). CASPubMed Google Scholar
Huang, M. et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res.58, 1208–1216 (1998). CASPubMed Google Scholar
Gorsch, S.M., Memoli, V.A., Stukel, T.A., Gold, L.I. & Arrick, B.A. Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res.52, 6949–6952 (1992). CASPubMed Google Scholar
Doran, T., Stuhlmiller, H., Kim, J.A., Martin, E.W.J. & Triozzi, P.L. Oncogene and cytokine expression of human colorectal tumors responding to immunotherapy. J. Immunother.20, 372–376 (1997). CASPubMed Google Scholar
Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity14, 715–725 (2001) CASPubMed Google Scholar
Fontana, A. et al. Transforming growth factor-β inhibits the generation of cytotoxic T cells in virus-infected mice. J. Immunol.143, 3230–3234 (1989). CASPubMed Google Scholar
Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res.57, 1007–1012 (1997). CASPubMed Google Scholar
Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science274, 1363–1366 (1996). CASPubMed Google Scholar
O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med.184, 1075–1082 (1996). CASPubMed Google Scholar
Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nature Med.2, 1361–1366 (1996). CASPubMed Google Scholar
Andreola, G. et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med.195, 1303–1316 (2002). CASPubMedPubMed Central Google Scholar
Restifo, N.P. Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med.6, 493–495 (2000). CASPubMed Google Scholar
Restifo, N.P. Countering the 'counterattack' hypothesis. Nature Med.7, 259 (2001). CASPubMed Google Scholar
Chappell, D.B., Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res.59, 59–62 (1999). CASPubMedPubMed Central Google Scholar
Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA94, 13862–13867 (1997). CASPubMedPubMed Central Google Scholar
Kang, S.M., Lin, Z., Ascher, N.L. & Stock, P.G. Fas ligand expression on islets as well as multiple cell lines results in accelerated neutrophilic rejection. Transplant. Proc.30, 538 (1998).
Drozdzik, M., Qian, C., Lasarte, J.J., Bilbao, R. & Prieto, J. Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL). Gene Ther.5, 1622–1630 (1998). CASPubMed Google Scholar
Chen, J.J., Sun, Y. & Nabel, G.J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science282, 1714–1717 (1998). CASPubMed Google Scholar
Zaks, T.Z., Chappell, D.B., Rosenberg, S.A. & Restifo, N.P. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J. Immunol.162, 3273–3279 (1999). CASPubMed Google Scholar
Cappello, P., Novelli, F., Forni, G. & Giovarelli, M. Death receptor ligands in tumors. J. Immunother.25, 1–15 (2002). CASPubMed Google Scholar
Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Med.8, 793–800 (2002). CASPubMed Google Scholar
McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol.168, 5979–5983 (2002). CASPubMed Google Scholar
Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001). CASPubMed Google Scholar
Sutmuller, R.P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194, 823–832 (2001). CASPubMedPubMed Central Google Scholar
Antony, P.A. & Restifo, N.P. Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J. Immunother.25, 202–206 (2002). CASPubMedPubMed Central Google Scholar
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol.3, 135–142 (2002). CAS Google Scholar
McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity.16, 311–323 (2002). CASPubMed Google Scholar
Green, E.A., Choi, Y. & Flavell, R.A. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity16, 183–191 (2002). CASPubMed Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol.1, 515–520 (2000). CAS Google Scholar
Moodycliffe, A.M., Nghiem, D., Clydesdale, G. & Ullrich, S.E. Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunol.1, 521–525 (2000). CAS Google Scholar