Mast cells in the development of adaptive immune responses (original) (raw)
Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol.7, 59–76 (1989). CASPubMed Google Scholar
Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev.77, 1033–1079 (1997). CASPubMed Google Scholar
Kawakami, T. & Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol.2, 773–786 (2002). CASPubMed Google Scholar
Galli, S.J., Zsebo, K.M. & Geissler, E.N. The kit ligand, stem cell factor. Adv. Immunol.55, 1–96 (1994). CASPubMed Google Scholar
Gonzalez-Espinosa, C. et al. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med.197, 1453–1465 (2003). CASPubMedPubMed Central Google Scholar
Galli, S. et al. Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu. Rev. Immunol.23, 749–786 (2005). CASPubMed Google Scholar
Kinet, J.P. The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol.17, 931–972 (1999). CASPubMed Google Scholar
Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol.25, 266–273 (2004). CASPubMed Google Scholar
Nakano, T. et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med.162, 1025–1043 (1985). CASPubMed Google Scholar
Tsai, M., Tam, S.Y., Wedemeyer, J. & Galli, S.J. Mast cells derived from embryonic stem cells: a model system for studying the effects of genetic manipulations on mast cell development, phenotype, and function in vitro and in vivo. Int. J. Hematol.75, 345–349 (2002). CASPubMed Google Scholar
Berrozpe, G. et al. The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between -23 and -154 kb upstream of Kit. Blood94, 2658–2666 (1999). CASPubMed Google Scholar
Hayashi, S., Kunisada, T., Ogawa, M., Yamaguchi, K. & Nishikawa, S. Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res.19, 1267–1271 (1991). CASPubMedPubMed Central Google Scholar
Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J.9, 1805–1813 (1990). CASPubMedPubMed Central Google Scholar
Reith, A.D. et al. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes Dev.4, 390–400 (1990). CASPubMed Google Scholar
Yamazaki, M. et al. C-kit gene is expressed by skin mast cells in embryos but not in puppies of Wsh/Wsh mice: age-dependent abolishment of c-kit gene expression. Blood83, 3509–3516 (1994). CASPubMed Google Scholar
Grimbaldeston, M.A., Chen, C.-C., Tam, S.-Y., Tsai, M. & Galli, S.J. Mast cell deficient W-sash c-kit mutant KitW-sh//KitW-sh mice as a model for investigating mast cell biology in vivo. FASEB J. (in the press).
Mallen-St Clair, J., Pham, C.T., Villalta, S.A., Caughey, G.H. & Wolters, P.J. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J. Clin. Invest.113, 628–634 (2004). CASPubMedPubMed Central Google Scholar
Stevens, J. & Loutit, J.F. Mast cells in spotted mutant mice (W Ph mi). Proc. R. Soc. Lond. B215, 405–409 (1982). CASPubMed Google Scholar
Duttlinger, R. et al. W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development118, 705–717 (1993). CASPubMed Google Scholar
Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1 induced toxicity. Nature432, 512–516 (2004). CASPubMed Google Scholar
Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature392, 90–93 (1998). CASPubMed Google Scholar
King, C.L. et al. Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni. J. Immunol.158, 294–300 (1997). CASPubMed Google Scholar
Strait, R.T., Morris, S.C., Yang, M., Qu, X.W. & Finkelman, F.D. Pathways of anaphylaxis in the mouse. J. Allergy Clin. Immunol.109, 658–668 (2002). CASPubMed Google Scholar
Williams, C.M. & Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med.192, 455–462 (2000). CASPubMedPubMed Central Google Scholar
Kobayashi, T. et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol.164, 3855–3861 (2000). CASPubMed Google Scholar
Woolhiser, M.R., Brockow, K. & Metcalfe, D.D. Activation of human mast cells by aggregated IgG through FcgammaRI: additive effects of C3a. Clin. Immunol.110, 172–180 (2004). CASPubMed Google Scholar
Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol.4, 787–799 (2004). CASPubMed Google Scholar
Galli, S.J., Tsai, M. & Chatterjea, D. in The Innate Immune Response to Infection (eds. Kaufman, S.H.E., Medzhitov, R. & Gordon, S.) 111–132 (ASM Press, Berlin, 2004). Google Scholar
Di Nardo, A., Vitiello, A. & Gallo, R.L. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol.170, 2274–2278 (2003). CASPubMed Google Scholar
Malaviya, R. et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J. Immunol.152, 1907–1914 (1994). CASPubMed Google Scholar
Malaviya, R., Twesten, N.J., Ross, E.A., Abraham, S.N. & Pfeifer, J.D. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immunol.156, 1490–1496 (1996). CASPubMed Google Scholar
Mekori, Y.A. & Metcalfe, D.D. Mast cell-T cell interactions. J. Allergy Clin. Immunol.104, 517–523 (1999). CASPubMed Google Scholar
Henz, B.M., Maurer, M., Lippert, U., Worm, M. & Babina, M. Mast cells as initiators of immunity and host defense. Exp. Dermatol.10, 1–10 (2001). CASPubMed Google Scholar
Frandji, P. et al. Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur. J. Immunol.26, 2517–2528 (1996). CASPubMed Google Scholar
Sayama, K. et al. Transcriptional response of human mast cells stimulated via the FcεRI and identification of mast cells as a source of IL-11. BMC Immunol.3, 5 (2002). PubMedPubMed Central Google Scholar
Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol.173, 5247–5257 (2004). CASPubMed Google Scholar
Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol.166, 868–876 (2001). CASPubMed Google Scholar
Wang, H.W., Tedla, N., Lloyd, A.R., Wakefield, D. & McNeil, P.H. Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J. Clin. Invest.102, 1617–1626 (1998). CASPubMedPubMed Central Google Scholar
Steinman, R.M. & Inaba, K. Myeloid dendritic cells. J. Leukoc. Biol.66, 205–208 (1999). CASPubMed Google Scholar
Cumberbatch, M., Dearman, R.J., Griffiths, C.E. & Kimber, I. Langerhans cell migration. Clin. Exp. Dermatol.25, 413–418 (2000). CASPubMed Google Scholar
Kaser, A. et al. A role for IL-16 in the cross-talk between dendritic cells and T cells. J. Immunol.163, 3232–3238 (1999). CASPubMed Google Scholar
Cumberbatch, M., Dearman, R.J., Antonopoulos, C., Groves, R.W. & Kimber, I. Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-α- and IL-1β-dependent mechanism. Immunology102, 323–330 (2001). CASPubMedPubMed Central Google Scholar
Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol.155, 3292–3295 (1995). CASPubMed Google Scholar
Yamazaki, S., Yokozeki, H., Satoh, T., Katayama, I. & Nishioka, K. TNF-alpha, RANTES, and MCP-1 are major chemoattractants of murine Langerhans cells to the regional lymph nodes. Exp. Dermatol.7, 35–41 (1998). CASPubMed Google Scholar
Carramolino, L. et al. Down-regulation of the beta-chemokine receptor CCR6 in dendritic cells mediated by TNF-α and IL-4. J. Leukoc. Biol.66, 837–844 (1999). CASPubMed Google Scholar
Robbiani, D.F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell103, 757–768 (2000). CASPubMed Google Scholar
Kabashima, K. et al. Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat. Med.9, 744–749 (2003). CASPubMed Google Scholar
Ioffreda, M.D., Whitaker, D. & Murphy, G.F. Mast cell degranulation upregulates α6 integrins on epidermal Langerhans cells. J. Invest. Dermatol.101, 150–154 (1993). CASPubMed Google Scholar
Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol.170, 3037–3045 (2003). CASPubMed Google Scholar
Caron, G. et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J. Immunol.166, 6000–6006 (2001). CASPubMed Google Scholar
Mazzoni, A., Young, H.A., Spitzer, J.H., Visintin, A. & Segal, D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest.108, 1865–1873 (2001). CASPubMedPubMed Central Google Scholar
Caron, G. et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J. Immunol.167, 3682–3686 (2001). CASPubMed Google Scholar
Kalinski, P., Hilkens, C.M., Snijders, A., Snijdewint, F.G. & Kapsenberg, M.L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol.159, 28–35 (1997). CASPubMed Google Scholar
Faveeuw, C. et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur. J. Immunol.33, 889–898 (2003). CASPubMed Google Scholar
Gosset, P. et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol.170, 4943–4952 (2003). CASPubMed Google Scholar
Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol.3, 673–680 (2002). CASPubMed Google Scholar
Ikeda, K. et al. Mast cells produce interleukin-25 upon FcεRI-mediated activation. Blood101, 3594–3596 (2003). CASPubMed Google Scholar
Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity15, 985–995 (2001). CASPubMed Google Scholar
Bryce, P.J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity20, 381–392 (2004). CASPubMed Google Scholar
Jawdat, D.M., Albert, E.J., Rowden, G., Haidl, I.D. & Marshall, J.S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol.173, 5275–5282 (2004). CASPubMed Google Scholar
Mekori, Y.A. The mastocyte: the “other” inflammatory cell in immunopathogenesis. J. Allergy Clin. Immunol.114, 52–57 (2004). CASPubMed Google Scholar
Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcεreceptor I cross-linking: an interspecies comparison. Blood100, 3861–3868 (2002). CASPubMed Google Scholar
Lin, T.J. et al. Selective early production of CCL20, or macrophage inflammatory protein 3α, by human mast cells in response to Pseudomonas aeruginosa. Infect. Immun.71, 365–373 (2003). CASPubMedPubMed Central Google Scholar
Mori, Y. et al. Tyk2 is essential for IFN-α-induced gene expression in mast cells. Int. Arch. Allergy Immunol.134, 25–29 (2004). CASPubMed Google Scholar
Ott, V.L., Cambier, J.C., Kappler, J., Marrack, P. & Swanson, B.J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4 . Nat. Immunol.4, 974–981 (2003). CASPubMed Google Scholar
Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature413, 420–425 (2001). CASPubMed Google Scholar
McLachlan, J.B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol.4, 1199–1205 (2003). CASPubMed Google Scholar
Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity1, 167–178 (1994). CASPubMed Google Scholar
Xu, J. et al. Mice deficient for the CD40 ligand. Immunity1, 423–431 (1994). CASPubMed Google Scholar
Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature365, 340–343 (1993). CASPubMed Google Scholar
Pawankar, R., Okuda, M., Yssel, H., Okumura, K. & Ra, C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the FcεRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest.99, 1492–1499 (1997). CASPubMedPubMed Central Google Scholar
Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol.111, 136–143 (1998). CASPubMedPubMed Central Google Scholar
Ryzhov, S. et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J. Immunol.172, 7726–7733 (2004). CASPubMed Google Scholar
Yoshikawa, T., Imada, T., Nakakubo, H., Nakamura, N. & Naito, K. Rat mast cell protease-I enhances immunoglobulin E production by mouse B cells stimulated with interleukin-4. Immunology104, 333–340 (2001). CASPubMedPubMed Central Google Scholar
Paul, W.E., Seder, R.A. & Plaut, M. Lymphokine and cytokine production by FcεRI+ cells. Adv. Immunol.53, 1–29 (1993). CASPubMed Google Scholar
Stassen, M. et al. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-κB is decisively involved in the expression of IL-9. J. Immunol.166, 4391–4398 (2001). CASPubMed Google Scholar
Villa, I. et al. Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology102, 165–172 (2001). CASPubMedPubMed Central Google Scholar
Williams, C.M.M. & Galli, S.J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol.105, 847–859 (2000). CASPubMed Google Scholar
Martin, T.R. et al. Mast cells contribute to the changes in heart rate, but not hypotension or death, associated with active anaphylaxis in mice. J. Immunol.151, 367–376 (1993). CASPubMed Google Scholar
Alenius, H. et al. Mast cells regulate IFN-γ expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J. Allergy Clin. Immunol.109, 106–113 (2002). CASPubMed Google Scholar
Ha, T.Y., Reed, N.D. & Crowle, P.K. Immune response potential of mast cell-deficient W/Wv mice. Int. Arch. Allergy Appl. Immunol.80, 85–94 (1986). CASPubMed Google Scholar
Martin, T.R., Galli, S.J., Katona, I.M. & Drazen, J.M. Role of mast cells in anaphylaxis. Evidence for the importance of mast cells in the cardiopulmonary alterations and death induced by anti-IgE in mice. J. Clin. Invest.83, 1375–1383 (1989). CASPubMedPubMed Central Google Scholar
Kung, T.T. et al. Mast cells modulate allergic pulmonary eosinophilia in mice. Am. J. Respir. Cell Mol. Biol.12, 404–409 (1995). CASPubMed Google Scholar
Takeda, K. et al. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med.186, 449–454 (1997). CASPubMedPubMed Central Google Scholar
Askenase, P.W. et al. Defective elicitation of delayed-type hypersensitivity in W/Wv and Sl/Sld mast cell-deficient mice. J. Immunol.131, 2687–2694 (1983). CASPubMed Google Scholar
Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med.192, 1441–1452 (2000). CASPubMedPubMed Central Google Scholar
Thomas, W.R. & Schrader, J.W. Delayed hypersensitivity in mast-cell-deficient mice. J. Immunol.130, 2565–2567 (1983). CASPubMed Google Scholar
Galli, S.J. & Hammel, I. Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science226, 710–713 (1984). CASPubMed Google Scholar
Wershil, B.K., Wang, Z.S., Gordon, J.R. & Galli, S.J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-alpha. J. Clin. Invest.87, 446–453 (1991). CASPubMedPubMed Central Google Scholar
Furuta, G.T. et al. Mast cell-dependent tumor necrosis factor α production participates in allergic gastric inflammation in mice. Gastroenterology113, 1560–1569 (1997). CASPubMed Google Scholar
Secor, V.H., Secor, W.E., Gutekunst, C.A. & Brown, M.A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med.191, 813–822 (2000). CASPubMedPubMed Central Google Scholar
Robbie-Ryan, M., Tanzola, M.B., Secor, V.H. & Brown, M.A. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J. Immunol.170, 1630–1634 (2003). CASPubMed Google Scholar
Tanzola, M.B., Robbie-Ryan, M., Gutekunst, C.A. & Brown, M.A. Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol.171, 4385–4391 (2003). CASPubMed Google Scholar
Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol.2, 216–222 (2001). CASPubMed Google Scholar
Pedotti, R., De Voss, J.J., Steinman, L. & Galli, S.J. Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol.24, 479–484 (2003). CASPubMed Google Scholar
Lee, D.M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science297, 1689–1692 (2002). CASPubMed Google Scholar
Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest.108, 1151–1158 (2001). CASPubMedPubMed Central Google Scholar