Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1 (original) (raw)

References

  1. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).
    Article CAS Google Scholar
  2. Tomlinson, M.G., Lin, J. & Weiss, A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol. Today 21, 584–591 (2000).
    Article CAS Google Scholar
  3. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).
    Article CAS Google Scholar
  4. Yablonski, D., Kane, L.P., Qian, D. & Weiss, A.A. Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).
    Article CAS Google Scholar
  5. Chu, P. et al. Systematic identification of regulatory proteins critical for T-cell activation. J. Biol. 2, 21 (2003).
    Article Google Scholar
  6. Chu, P.C. et al. A novel role for p21-activated protein kinase 2 in T cell activation. J. Immunol. 172, 7324–7334 (2004).
    Article CAS Google Scholar
  7. Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003).
    Article CAS Google Scholar
  8. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).
    Article CAS Google Scholar
  9. Jacobelli, J., Andres, P.G., Boisvert, J. & Krummel, M.F. New views of the immunological synapse: variations in assembly and function. Curr. Opin. Immunol. 16, 345–352 (2004).
    Article CAS Google Scholar
  10. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).
    Article CAS Google Scholar
  11. Montoya, M.C. et al. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat. Immunol. 3, 159–168 (2002).
    Article CAS Google Scholar
  12. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).
    Article CAS Google Scholar
  13. Ku, G.M., Yablonski, D., Manser, E., Lim, L. & Weiss, A.A. PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J. 20, 457–465 (2001).
    Article CAS Google Scholar
  14. Manser, E., Leung, T., Salihuddin, H., Zhao, Z.S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).
    Article CAS Google Scholar
  15. DeFranco, A.L. Vav and the B cell signalosome. Nat. Immunol. 2, 482–484 (2001).
    Article CAS Google Scholar
  16. Tybulewicz, V.L., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).
    Article CAS Google Scholar
  17. Crespo, P., Schuebel, K.E., Ostrom, A.A., Gutkind, J.S. & Bustelo, X.R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).
    Article CAS Google Scholar
  18. Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17, 1346–1353 (1997).
    Article CAS Google Scholar
  19. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360–1368 (2003).
    Article CAS Google Scholar
  20. Liu, S.K., Fang, N., Koretzky, G.A. & McGlade, C.J. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).
    Article CAS Google Scholar
  21. Bagrodia, S., Taylor, S.J., Jordon, K.A., Van Aelst, L. & Cerione, R.A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633–23636 (1998).
    Article CAS Google Scholar
  22. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).
    Article CAS Google Scholar
  23. Zhao, Z.S., Manser, E. & Lim, L. Interaction between PAK and Nck: a template for Nck targets and role of PAK autophosphorylation. Mol. Cell. Biol. 20, 3906–3917 (2000).
    Article CAS Google Scholar
  24. Premont, R.T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082–14087 (1998).
    Article CAS Google Scholar
  25. Bagrodia, S. et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22393–22400 (1999).
    Article CAS Google Scholar
  26. Premont, R.T., Claing, A., Vitale, N., Perry, S.J. & Lefkowitz, R.J. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275, 22373–22380 (2000).
    Article CAS Google Scholar
  27. Turner, C.E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).
    Article CAS Google Scholar
  28. Turner, C.E., West, K.A. & Brown, M.C. Paxillin-ARF GAP signaling and the cytoskeleton. Curr. Opin. Cell Biol. 13, 593–599 (2001).
    Article CAS Google Scholar
  29. Natarajan, K., Yin, G. & Berk, B.C. Scaffolds direct Src-specific signaling in response to angiotensin II: new roles for Cas and GIT1. Mol. Pharmacol. 65, 822–825 (2004).
    Article CAS Google Scholar
  30. Zakaria, S. et al. Differential regulation of TCR-mediated gene transcription by Vav family members. J. Exp. Med. 199, 429–434 (2004).
    Article CAS Google Scholar
  31. Wu, J., Motto, D.G., Koretzky, G.A. & Weiss, A. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4, 593–602 (1996).
    Article CAS Google Scholar
  32. Benard, V., Bohl, B.P. & Bokoch, G.M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).
    Article CAS Google Scholar
  33. Kraynov, V.S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).
    Article CAS Google Scholar
  34. Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).
    Article CAS Google Scholar
  35. King, C.C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).
    Article CAS Google Scholar
  36. Chong, C., Tan, L., Lim, L. & Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 276, 17347–17353 (2001).
    Article CAS Google Scholar
  37. Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).
    Article CAS Google Scholar
  38. Kim, H.K. et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65, 435–441 (1991).
    Article CAS Google Scholar
  39. Fraser, J.D., Newton, M.E. & Weiss, A. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J. Exp. Med. 175, 1131–1134 (1992).
    Article CAS Google Scholar
  40. Shapiro, V.S., Truitt, K.E., Imboden, J.B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell. Biol. 17, 4051–4058 (1997).
    Article CAS Google Scholar
  41. Daniels, R.H., Hall, P.S. & Bokoch, G.M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).
    Article CAS Google Scholar
  42. Loo, T.H., Ng, Y.W., Lim, L. & Manser, E. GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol. Cell. Biol. 24, 3849–3859 (2004).
    Article CAS Google Scholar
  43. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat. Immunol. 1, 23–29 (2000).
    Article CAS Google Scholar
  44. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).
    Article CAS Google Scholar
  45. Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89 (2005).
    Article CAS Google Scholar
  46. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).
    Article CAS Google Scholar
  47. Weiss, A. & Stobo, J.D. Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J. Exp. Med. 160, 1284–1299 (1984).
    Article CAS Google Scholar
  48. Yablonski, D., Kuhne, M.R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).
    Article CAS Google Scholar
  49. Cao, Y. et al. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J. 21, 4809–4819 (2002).
    Article CAS Google Scholar
  50. Williams, B.L. et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399 (1998).
    Article CAS Google Scholar
  51. Kuhne, M.R., Ku, G. & Weiss, A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J. Biol. Chem. 275, 2185–2190 (2000).
    Article CAS Google Scholar
  52. Takesono, A., Horai, R., Mandai, M., Dombroski, D. & Schwartzberg, P.L. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr. Biol. 14, 917–922 (2004).
    Article CAS Google Scholar
  53. Shapiro, V.S., Mollenauer, M.N., Greene, W.C. & Weiss, A. c-rel regulation of IL-2 gene expression may be mediated through activation of AP-1. J. Exp. Med. 184, 1663–1669 (1996).
    Article CAS Google Scholar

Download references