Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells (original) (raw)
References
Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCAS Google Scholar
Santambrogio, L., Sato, A.K., Fischer, F.R., Dorf, M.E. & Stern, L.J. Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc. Natl. Acad. Sci. USA96, 15050–15055 (1999). ArticleCAS Google Scholar
Santambrogio, L. et al. Extracellular antigen processing and presentation by immature dendritic cells. Proc. Natl. Acad. Sci. USA96, 15056–15061 (1999). ArticleCAS Google Scholar
Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403 (2003). ArticleCAS Google Scholar
Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol.155, 53–63 (2001). ArticleCAS Google Scholar
Barois, N., de Saint-Vis, B., Lebecque, S., Geuze, H.J. & Kleijmeer, M.J. MHC class II compartments in human dendritic cells undergo profound structural changes upon activation. Traffic3, 894–905 (2002). ArticleCAS Google Scholar
Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature418, 988–994 (2002). ArticleCAS Google Scholar
Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature418, 983–988 (2002). ArticleCAS Google Scholar
Villadangos, J.A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity14, 739–749 (2001). ArticleCAS Google Scholar
Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med.191, 927–936 (2000). ArticleCAS Google Scholar
Barton, G.M. & Rudensky, A.Y. An altered invariant chain protein with an antigenic peptide in place of CLIP forms SDS-stable complexes with class II alphabeta dimers and facilitates highly efficient peptide loading. Int. Immunol.10, 1159–1165 (1998). ArticleCAS Google Scholar
Traub, L.M., Kornfeld, S. & Ungewickell, E. Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment. J. Biol. Chem.270, 4933–4942 (1995). ArticleCAS Google Scholar
Traub, L.M., Downs, M.A., Westrich, J.L. & Fremont, D.H. Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl. Acad. Sci. USA96, 8907–8912 (1999). ArticleCAS Google Scholar
Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem.72, 395–447 (2003). ArticleCAS Google Scholar
Doray, B., Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science297, 1700–1703 (2002). ArticleCAS Google Scholar
Hofmann, M.W. et al. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem.274, 36153–36158 (1999). ArticleCAS Google Scholar
Kongsvik, T.L., Honing, S., Bakke, O. & Rodionov, D.G. Mechanism of interaction between leucine-based sorting signals from the invariant chain and clathrin-associated adaptor protein complexes AP1 and AP2. J. Biol. Chem.277, 16484–16488 (2002). ArticleCAS Google Scholar
Brachet, V., Pehau-Arnaudet, G., Desaymard, C., Raposo, G. & Amigorena, S. Early endosomes are required for major histocompatiblity complex class II transport to peptide-loading compartments. Mol. Biol. Cell10, 2891–2904 (1999). ArticleCAS Google Scholar
Glickman, J.N., Morton, P.A., Slot, J.W., Kornfeld, S. & Geuze, H. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts. J. Cell Biol.132, 769–785 (1996). ArticleCAS Google Scholar
Wong, S.H., Santambrogio, L. & Strominger, J.L. Caspases and nitric oxide broadly regulate dendritic cell maturation and surface expression of class II MHC proteins. Proc. Natl. Acad. Sci. USA101, 17783–17788 (2004). ArticleCAS Google Scholar
Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA90, 3539–3543 (1993). ArticleCAS Google Scholar
Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med.185, 317–328 (1997). ArticleCAS Google Scholar
Rossig, L. et al. Nitric oxide inhibits caspase-3 by S-nitrosylation in vivo. J. Biol. Chem.274, 6823–6826 (1999). ArticleCAS Google Scholar
Bogdan, C. Nitric oxide and the immune response. Nat. Immunol.2, 907–916 (2001). ArticleCAS Google Scholar
Li, J., Billiar, T.R., Talanian, R.V. & Kim, Y.M. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun.240, 419–424 (1997). ArticleCAS Google Scholar
Woo, M. et al. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat. Immunol.4, 1016–1022 (2003). ArticleCAS Google Scholar
Nogi, T. et al. Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain. Nat. Struct. Biol.9, 527–531 (2002). CAS Google Scholar
Duncan, M.C., Costaguta, G. & Payne, G.S. Yeast epsin-related proteins required for Golgi-endosome traffic define a γ-adaptin ear-binding motif. Nat. Cell Biol.5, 77–81 (2003). ArticleCAS Google Scholar
Mills, I.G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol.160, 213–222 (2003). Article Google Scholar
Bremnes, T., Lauvrak, V., Lindqvist, B. & Bakke, O. A region from the medium chain adaptor subunit (mu) recognizes leucine- and tyrosine-based sorting signals. J. Biol. Chem.273, 8638–8645 (1998). ArticleCAS Google Scholar
Kang, S., Liang, L., Parker, C.D. & Collawn, J.F. Structural requirements for major histocompatibility complex class II invariant chain endocytosis and lysosomal targeting. J. Biol. Chem.273, 20644–20652 (1998). ArticleCAS Google Scholar
Nordeng, T.W. et al. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol. Biol. Cell13, 1846–1856 (2002). ArticleCAS Google Scholar
Robinson, M.S. & Bonifacino, J.S. Adaptor-related proteins. Curr. Opin. Cell Biol.13, 444–453 (2001). ArticleCAS Google Scholar
Hirst, J., Motley, A., Harasaki, K., Peak Chew, S.Y. & Robinson, M.S. EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol. Biol. Cell14, 625–641 (2003). ArticleCAS Google Scholar
Mayhew, T.M., Griffiths, G. & Lucocq, J.M. Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem. Cell Biol.122, 171–177 (2004). ArticleCAS Google Scholar
Wilhelm, S., Wagner, H. & Hacker, G. Activation of caspase-3-like enzymes in non-apoptotic T cells. Eur. J. Immunol.28, 891–900 (1998). ArticleCAS Google Scholar
Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med.190, 1879–1890 (1999). ArticleCAS Google Scholar
Mukerjee, N., McGinnis, K.M., Gnegy, M.E. & Wang, K.K. Caspase-mediated calcineurin activation contributes to IL-2 release during T cell activation. Biochem. Biophys. Res. Commun.285, 1192–1199 (2001). ArticleCAS Google Scholar
Zermati, Y. et al. Caspase activation is required for terminal erythroid differentiation. J. Exp. Med.193, 247–254 (2001). ArticleCAS Google Scholar
Kolbus, A. et al. Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J. Exp. Med.196, 1347–1353 (2002). ArticleCAS Google Scholar
Moretti, A. et al. Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc. Natl. Acad. Sci. USA99, 11860–11865 (2002). ArticleCAS Google Scholar
Newton, K. & Strasser, A. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev.17, 819–825 (2003). ArticleCAS Google Scholar
Page, L.J., Sowerby, P.J., Lui, W.W. & Robinson, M.S. γ-synergin: an EH domain-containing protein that interacts with γ-adaptin. J. Cell Biol.146, 993–1004 (1999). ArticleCAS Google Scholar
Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol.149, 67–80 (2000). ArticleCAS Google Scholar
Salamero, J., Le Borgne, R., Saudrais, C., Goud, B. & Hoflack, B. Expression of major histocompatibility complex class II molecules in HeLa cells promotes the recruitment of AP-1 Golgi-specific assembly proteins on Golgi membranes. J. Biol. Chem.271, 30318–30321 (1996). ArticleCAS Google Scholar
Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol.143, 973–990 (1998). ArticleCAS Google Scholar
Meyer, C. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J.19, 2193–2203 (2000). ArticleCAS Google Scholar
Waguri, S. et al. Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol. Biol. Cell14, 142–155 (2003). ArticleCAS Google Scholar
Corradin, S.B., Mauel, J., Donini, S.D., Quattrocchi, E. & Ricciardi-Castagnoli, P. Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia7, 255–262 (1993). ArticleCAS Google Scholar
Raposo, G. & Kleijmeer, M.J. in Handbook of Experimental Immunology 5th edn. Ch. 208 (ed. Herzenberg, L.W., Herzenberg, L.A. and Blackwell, C.) 1–11 (I. Blackwell Science, Cambridge, Massachusetts, 1997). Google Scholar
Villadangos, J.A. et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev.172, 109–120 (1999). ArticleCAS Google Scholar