A structural basis for complement inhibition by Staphylococcus aureus (original) (raw)
References
Therapeutic Intervention in the Complement System (eds. Lambris, J.D. & Holers, V.M.) (Humana, Totowa, New Jersey, 2000).
Morikis, D. & Lambris, J.D. Structural Biology of the Complement System (eds. Morikis, D. & Lambris, J.D.) (Taylor & Francis, Boca Raton, Florida, 2005). Book Google Scholar
The Human Complement System in Health and Diseases (eds. Volanakis, J.E. & Frank, M.) (Marcel Dekker, New York 1998).
Patti, J.M., Allen, B.L., McGavin, M.J. & Hook, M. MSCRAMM mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol.48, 585–617 (1994). ArticleCAS Google Scholar
Chavakis, T. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med.8, 687–693 (2002). ArticleCAS Google Scholar
Lee, L.Y. et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J. Clin. Invest.110, 1461–1471 (2002). ArticleCAS Google Scholar
Lee, L.Y.L. et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis.190, 571–579 (2004). ArticleCAS Google Scholar
Lee, L.Y.L., Liang, X., Hook, M. & Brown, E.L. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J. Biol. Chem.279, 50710–50716 (2004). ArticleCAS Google Scholar
Rooijakkers, S.H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol.6, 920–927 (2005). ArticleCAS Google Scholar
Hornef, M.W., Wick, M.J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune response. Nat. Immunol.3, 1033–1040 (2002). ArticleCAS Google Scholar
Sahu, A. & Lambris, J.D. Structure and biology of complement protein 3, a connecting link between innate and acquired immunity. Immunol. Rev.180, 35–48 (2001). ArticleCAS Google Scholar
Neth, O., Jack, D.L., Johnson, M., Klein, N.J. & Turner, M.W. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J. Immunol.169, 4430–4436 (2002). ArticleCAS Google Scholar
Kawasaki, A. et al. Activation of the human complement cascade by bacterial cell walls, peptidoglycans, water-soluble peptidoglycan components, and synthetic muramylpeptides - studies on active components and structural requirements. Microbiol. Immunol.31, 551–569 (1987). ArticleCAS Google Scholar
Bredius, R.G., Driedijk, P.C., Schouten, M.F., Weening, R.S. & Out, T.A. Complement activation by polyclonal immunoglobulin G1 and G2 antibodies against Staphylococcus aureus, Haemophilus influenzae type B, and tetanus toxoid. Infect. Immun.60, 4838–4847 (1992). CASPubMedPubMed Central Google Scholar
Verbrugh, H.A., Van Dijk, W.C., Peters, R., Van Der Tol, M.E. & Verhoef, J. The role of Staphylococcus aureus cell-wall peptidoglycan, teichoic acid, and protein A in the processes of complement activation and opsonization. Immunology37, 615–621 (1979). CASPubMedPubMed Central Google Scholar
Wilkinson, B.J., Kim, Y., Peterson, P.K., Quie, P.G. & Michael, A.F. Activation of complement by cell surface components of Staphylococcus aureus. Infect. Immun.20, 388–392 (1978). CASPubMedPubMed Central Google Scholar
Sakiniene, E., Bremell, T. & Tarkowski, A. Complement depletion aggravates Staphylococcus aureus septicaemia and septic arthritis. Clin. Exp. Immunol.115, 95–102 (1999). ArticleCAS Google Scholar
Palma, M., Nozohoor, S., Schennings, T., Heimdahl, A. & Flock, J.-I. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect. Immun.64, 5284–5289 (1996). CASPubMedPubMed Central Google Scholar
Nagar, B., Jones, R.G., Diefenbach, R.J., Isenman, D.E. & Rini, J.M. X-ray crystal structure of C3d: aC3 fragment and ligand for complement receptor 2. Science280, 1277–1281 (1998). ArticleCAS Google Scholar
Harboe, M., Ulvund, G., Vien, L., Fung, M. & Mollnes, T.E. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin. Exp. Immunol.138, 439–446 (2004). ArticleCAS Google Scholar
Hack, C.E. et al. Disruption of the internal thioester bond in the third component of complement, (C3) which results in the exposure of neodeterminants also present on activation products of C3. An analysis with monoclonal antibodies. J. Immunol.141, 1602–1609 (1988). CASPubMed Google Scholar
Nishida, N., Walz, T. & Springer, T.A. Structural transitions of complement component C3 and its activation products. Proc. Natl. Acad. Sci. USA103, 19737–19742 (2006). ArticleCAS Google Scholar
Janssen, B.J.C. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature437, 505–511 (2005). ArticleCAS Google Scholar
Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature444, 213–216 (2006). ArticleCAS Google Scholar
Isenman, D.E. & Cooper, N.R. The structure and function of the third component of human complement 1. The nature and extent of conformational changes accompanying C3 activation. Mol. Immunol.18, 331–339 (1981). ArticleCAS Google Scholar
Isenman, D.E., Kells, D.I.C., Cooper, N.R., Muller-Eberhard, H.J. & Pangburn, M.K. Nucleophilic modification of human complement component protein C3: correlation of conformational changes with acquisition of C3b-like functional properties. Biochemistry20, 4458–4467 (1981). ArticleCAS Google Scholar
Isenman, D.E. Conformational changes accompanying proteolytic cleavage of human complement protein C3b by the regulatory enzyme factor I and its cofactor H. Spectroscopic and enzymological studies. J. Biol. Chem.258, 4238–4244 (1983). CASPubMed Google Scholar
Nilsson, B. et al. Confomational differences between surface-bound and fluid-phase complement component-C3 fragments. Epitope mapping by cDNA expression. Biochem. J.282, 715–721 (1992). ArticleCAS Google Scholar
Winters, M.S., Spellman, D.S. & Lambris, J.D. Solvent accessibility of native and hydrolyzed human complement component 3 analyzed by hydrogen/deuterium exchange and mass spectrometry. J. Immunol.174, 3469–3474 (2005). ArticleCAS Google Scholar
Lindahl, G., Sjobring, U. & Johnsson, E. Human complement regulators: a major target for pathogenic microorganisms. Curr. Opin. Immunol.12, 44–51 (2000). ArticleCAS Google Scholar
Zipfel, P.F. et al. Factor H family proteins: on complement, microbes and human diseases. Biochem. Soc. Trans.30, 971–978 (2002). ArticleCAS Google Scholar
Hammel, M., Ramyar, K.X., Spencer, C.T. & Geisbrecht, B.V. Crystallization and X-ray diffraction analysis of the complement component-3 (C3) inhibitory domain of Efb from Staphylococcus aureus. Acta. Cryst. F.62, 285–288 (2006). ArticleCAS Google Scholar
Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr.55, 849–861 (1999). ArticleCAS Google Scholar
Terwilliger, T.C. Maximum likelihood density modification. Acta Crystallogr. D Biol. Crystallogr.56, 965–972 (2000). ArticleCAS Google Scholar
Terwilliger, T.C. Automated main-chain model-building by template-matching and interative fragment extension. Acta Crystallogr. D Biol. Crystallogr.59, 34–44 (2002). Google Scholar
Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in the models. Acta Crystallogr. D Biol. Crystallogr.47, 110–119 (1991). Article Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar
Murshudov, G.N., Lebedev, A., Vagin, A.A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr.55, 247–255 (1999). ArticleCAS Google Scholar
Winn, M., Isupov, M. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacments in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr.57, 122–133 (2001). ArticleCAS Google Scholar
The Collaborative Computational Crystallography Project 4. The CCP4 suite: programs for protein crystallography. Acta Cryst. D50, 760–763 (1994).
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCAS Google Scholar
Zemla, A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res.31, 3370–3374 (2003). ArticleCAS Google Scholar
Kraus, D., Medof, D.E. & Mold, C. Complementary recognition of alternative pathway activators by decay-accelerating factor and factor H. Infect. Immun.66, 399–405 (1998). CASPubMedPubMed Central Google Scholar
Sfyroera, G., Katragadda, M., Morikis, D., Isaacs, S.N. & Lambris, J.D. Electrostatic modeling predicts the activities of orthopoxvirus complement control proteins. J. Immunol.174, 2143–2151 (2005). ArticleCAS Google Scholar
Becherer, J.D., Alsenz, J., Esparza, I., Hack, C.E. & Lambris, J.D. A segment spanning residues 727–768 of the complement C3 sequence contains a neoantigenic site and accomodates the binding of CR1, factor H, and factor B. Biochemistry31, 1787–1794 (1992). ArticleCAS Google Scholar