Recent advances in antigen processing and presentation (original) (raw)
Kloetzel, P.M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol.5, 661–669 (2004). CASPubMed Google Scholar
Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol.5, 670–677 (2004). CASPubMed Google Scholar
Watts, C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat. Immunol.5, 685–692 (2004). CASPubMed Google Scholar
Ackerman, A.L. & Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol.5, 678–684 (2004). CASPubMed Google Scholar
Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure2, 245–251 (1994). CASPubMed Google Scholar
Glithero, A. et al. The crystal structure of H-2Db complexed with a partial peptide epitope suggests a major histocompatibility complex class I assembly intermediate. J. Biol. Chem.281, 12699–12704 (2006). CASPubMed Google Scholar
Carven, G.J. et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J. Biol. Chem.279, 16561–16570 (2004). CASPubMed Google Scholar
Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R. & Wearsch, P.A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev.207, 145–157 (2005). CASPubMed Google Scholar
Cresswell, P. Invariant chain structure and MHC class II function. Cell84, 505–507 (1996). CASPubMed Google Scholar
Carven, G.J. & Stern, L.J. Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry44, 13625–13637 (2005). CASPubMed Google Scholar
Weber, D.A., Evavold, B.D. & Jensen, P.E. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science274, 618–620 (1996). CASPubMed Google Scholar
Pashine, A. et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity19, 183–192 (2003). CASPubMed Google Scholar
Belmares, M.P., Busch, R., Wucherpfennig, K.W., McConnell, H.M. & Mellins, E.D. Structural factors contributing to DM susceptibility of MHC class II-peptide complexes. J. Immunol.169, 5109–5117 (2002). PubMed Google Scholar
Chou, C.L. & Sadegh-Nasseri, S. HLA-DM recognizes the flexible conformation of major histocompatibility complex class II. J. Exp. Med.192, 1697–1706 (2000). CASPubMedPubMed Central Google Scholar
Lazarski, C.A. et al. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity23, 29–40 (2005). CASPubMed Google Scholar
Lazarski, C.A., Chaves, F.A. & Sant, A.J. The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. J. Exp. Med.203, 1319–1328 (2006). CASPubMedPubMed Central Google Scholar
McFarland, B.J., Katz, J.F., Sant, A.J. & Beeson, C. Energetics and cooperativity of the hydrogen bonding and anchor interactions that bind peptides to MHC class II protein. J. Mol. Biol.350, 170–183 (2005). CASPubMed Google Scholar
Narayan, K. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR-peptide complexes. Nat. Immunol.8, 92–100 (2007). CASPubMed Google Scholar
Lovitch, S.B., Pu, Z. & Unanue, E.R. Amino-terminal flanking residues determine the conformation of a peptide-class II MHC complex. J. Immunol.176, 2958–2968 (2006). CASPubMed Google Scholar
Lovitch, S.B., Esparza, T.J., Schweitzer, G., Herzog, J. & Unanue, E.R. Activation of type B T cells after protein immunization reveals novel pathways of in vivo presentation of peptides. J. Immunol.178, 122–133 (2007). CASPubMed Google Scholar
De Wall, S.L. et al. Noble metals strip peptides from class II MHC proteins. Nat. Chem. Biol.2, 197–201 (2006). CASPubMed Google Scholar
Hornell, T.M. et al. Human dendritic cell expression of HLA-DO is subset specific and regulated by maturation. J. Immunol.176, 3536–3547 (2006). CASPubMed Google Scholar
Chen, X., Reed-Loisel, L.M., Karlsson, L. & Jensen, P.E. H2-O expression in primary dendritic cells. J. Immunol.176, 3548–3556 (2006). CASPubMed Google Scholar
Fallas, J.L., Yi, W., Draghi, N.A., O'Rourke, H.M. & Denzin, L.K. Expression patterns of H2-O in mouse B cells and dendritic cells correlate with cell function. J. Immunol.178, 1488–1497 (2007). CASPubMed Google Scholar
Chen, X. et al. Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J. Exp. Med.195, 1053–1062 (2002). CASPubMedPubMed Central Google Scholar
Glazier, K.S. et al. Germinal center B cells regulate their capability to present antigen by modulation of HLA-DO. J. Exp. Med.195, 1063–1069 (2002). CASPubMedPubMed Central Google Scholar
Maric, M. et al. Defective antigen processing in GILT-free mice. Science294, 1361–1365 (2001). CASPubMed Google Scholar
Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E.S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science307, 1630–1634 (2005). CASPubMed Google Scholar
Delamarre, L., Couture, R., Mellman, I. & Trombetta, E.S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med.203, 2049–2055 (2006). CASPubMedPubMed Central Google Scholar
Sercarz, E.E. & Maverakis, E. Mhc-guided processing: binding of large antigen fragments. Nat. Rev. Immunol.3, 621–629 (2003). CASPubMed Google Scholar
Mimura, Y. et al. Folding of an MHC class II-restricted tumor antigen controls its antigenicity via MHC-guided processing. Proc. Natl. Acad. Sci. USA104, 5983–5988 (2007). CASPubMedPubMed Central Google Scholar
Davidson, H.W. & Watts, C. Epitope-directed processing of specific antigen by B lymphocytes. J. Cell Biol.109, 85–92 (1989). CASPubMed Google Scholar
Simitsek, P.D., Campbell, D.G., Lanzavecchia, A., Fairweather, N. & Watts, C. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J. Exp. Med.181, 1957–1963 (1995). CASPubMed Google Scholar
Moss, C.X., Tree, T.I. & Watts, C. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO J.26, 2137–2147 (2007). CASPubMedPubMed Central Google Scholar
Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403 (2003). CASPubMed Google Scholar
West, M.A. et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science305, 1153–1157 (2004). CASPubMed Google Scholar
Santambrogio, L. et al. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat. Immunol.6, 1020–1028 (2005). CASPubMed Google Scholar
Shin, J.S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature444, 115–118 (2006). CASPubMed Google Scholar
van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity25, 885–894 (2006). CASPubMed Google Scholar
Ohmura-Hoshino, M. et al. Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol.177, 341–354 (2006). CASPubMed Google Scholar
Blander, J.M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440, 808–812 (2006). CASPubMed Google Scholar
Blander, J.M. & Medzhitov, R. Regulation of phagosome maturation by signals from Toll-like receptors. Science304, 1014–1018 (2004). CASPubMed Google Scholar
Elliott, T. & Williams, A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev.207, 89–99 (2005). CASPubMed Google Scholar
Sijts, A.J. & Pamer, E.G. Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med.185, 1403–1411 (1997). CASPubMedPubMed Central Google Scholar
Lewis, J.W. & Elliott, T. Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr. Biol.8, 717–720 (1998). CASPubMed Google Scholar
Howarth, M., Williams, A., Tolstrup, A.B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. USA101, 11737–11742 (2004). CASPubMedPubMed Central Google Scholar
Paulsson, K.M., Jevon, M., Wang, J.W., Li, S. & Wang, P. The double lysine motif of tapasin is a retrieval signal for retention of unstable MHC class I molecules in the endoplasmic reticulum. J. Immunol.176, 7482–7488 (2006). CASPubMed Google Scholar
Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity16, 87–98 (2002). CASPubMed Google Scholar
Peaper, D.R., Wearsch, P.A. & Cresswell, P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J.24, 3613–3623 (2005). CASPubMedPubMed Central Google Scholar
Garbi, N., Tanaka, S., Momburg, F. & Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol.7, 93–102 (2006). CASPubMed Google Scholar
Kienast, A., Preuss, M., Winkler, M. & Dick, T.P. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat. Immunol.8, 864–872 (2007). CASPubMed Google Scholar
Chen, M. & Bouvier, M. Analysis of interactions in a tapasin-class I complex provides a mechanism for peptide selection. EMBO J.26, 1681–1690 (2007). CASPubMedPubMed Central Google Scholar
Wearsch, P.A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol.8, 873–881 (2007). CASPubMed Google Scholar
Park, B. et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell127, 369–382 (2006). CASPubMed Google Scholar
York, I.A., Bhutani, N., Zendzian, S., Goldberg, A.L. & Rock, K.L. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J. Immunol.177, 1434–1443 (2006). CASPubMed Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774 (2000). CASPubMed Google Scholar
Yewdell, J.W. & Nicchitta, C.V. The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol.27, 368–373 (2006). CASPubMed Google Scholar
Yewdell, J.W. The seven dirty little secrets of major histocompatibility complex class I antigen processing. Immunol. Rev.207, 8–18 (2005). CASPubMed Google Scholar
Vabulas, R.M. & Hartl, F.U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science310, 1960–1963 (2005). CASPubMed Google Scholar
Zook, M.B., Howard, M.T., Sinnathamby, G., Atkins, J.F. & Eisenlohr, L.C. Epitopes derived by incidental translational frameshifting give rise to a protective CTL response. J. Immunol.176, 6928–6934 (2006). CASPubMed Google Scholar
Hanada, K., Yewdell, J.W. & Yang, J.C. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature427, 252–256 (2004). CASPubMed Google Scholar
Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science304, 587–590 (2004). CASPubMed Google Scholar
Warren, E.H. et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science313, 1444–1447 (2006). CASPubMed Google Scholar
Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips: the generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol.20, 463–493 (2002). CASPubMed Google Scholar
Reits, E. et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity20, 495–506 (2004). CASPubMed Google Scholar
Guil, S. et al. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J. Biol. Chem.281, 39925–39934 (2006). CASPubMed Google Scholar
Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature419, 480–483 (2002). CASPubMed Google Scholar
Saric, T. et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol.3, 1169–1176 (2002). CASPubMed Google Scholar
York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol.3, 1177–1184 (2002). CASPubMed Google Scholar
Chang, S.C., Momburg, F., Bhutani, N. & Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl. Acad. Sci. USA102, 17107–17112 (2005). CASPubMedPubMed Central Google Scholar
Kanaseki, T., Blanchard, N., Hammer, G.E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity25, 795–806 (2006). CASPubMedPubMed Central Google Scholar
Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity18, 97–108 (2003). CASPubMed Google Scholar
Spee, P. & Neefjes, J. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur. J. Immunol.27, 2441–2449 (1997). CASPubMed Google Scholar
Lammert, E., Stevanovic, S., Brunner, J., Rammensee, H.G. & Schild, H. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum. Eur. J. Immunol.27, 1685–1690 (1997). CASPubMed Google Scholar
Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol.6, 689–697 (2005). CASPubMed Google Scholar
Hammer, G.E., Gonzalez, F., Champsaur, M., Cado, D. & Shastri, N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat. Immunol.7, 103–112 (2006). CASPubMed Google Scholar
Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med.203, 647–659 (2006). CASPubMedPubMed Central Google Scholar
York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA103, 9202–9207 (2006). CASPubMedPubMed Central Google Scholar
Hammer, G.E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol.8, 101–108 (2007). CASPubMed Google Scholar
Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science316, 1349–1353 (2007). CASPubMed Google Scholar
Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science280, 450–453 (1998). CASPubMed Google Scholar
Shen, L. & Rock, K.L. Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr. Opin. Immunol.18, 85–91 (2006). CASPubMed Google Scholar
den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med.192, 1685–1696 (2000). CASPubMedPubMed Central Google Scholar
Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med.195, 1289–1302 (2002). CASPubMedPubMed Central Google Scholar
Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science315, 107–111 (2007). CASPubMed Google Scholar
Shen, L., Sigal, L.J., Boes, M. & Rock, K.L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity21, 155–165 (2004). CASPubMed Google Scholar
Norbury, C.C. et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science304, 1318–1321 (2004). CASPubMed Google Scholar
Wolkers, M.C., Brouwenstijn, N., Bakker, A.H., Toebes, M. & Schumacher, T.N. Antigen bias in T cell cross-priming. Science304, 1314–1317 (2004). CASPubMed Google Scholar
Shen, L. & Rock, K.L. Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl. Acad. Sci. USA101, 3035–3040 (2004). CASPubMedPubMed Central Google Scholar
Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol.20, 395–425 (2002). CASPubMed Google Scholar
Accapezzato, D. et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J. Exp. Med.202, 817–828 (2005). CASPubMedPubMed Central Google Scholar
Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell126, 205–218 (2006). CASPubMed Google Scholar
Ackerman, A.L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity25, 607–617 (2006). CASPubMed Google Scholar
Wiertz, E.J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996). CASPubMed Google Scholar
Ackerman, A.L., Kyritsis, C. & Tamp, È.R. & Cresswell, P. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol.6, 107–113 (2005). CASPubMed Google Scholar
Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P.A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science316, 612–616 (2007). CASPubMed Google Scholar
Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell110, 119–131 (2002). CASPubMed Google Scholar
Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature425, 397–402 (2003). CASPubMed Google Scholar
Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature425, 402–406 (2003). CASPubMed Google Scholar
Hatsuzawa, K. et al. Involvement of syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE protein, in ER-mediated phagocytosis. Mol. Biol. Cell17, 3964–3977 (2006). CASPubMedPubMed Central Google Scholar
Touret, N. et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell123, 157–170 (2005). CASPubMed Google Scholar
Neijssen, J. et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature434, 83–88 (2005). CASPubMed Google Scholar
Zhou, D. et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity22, 571–581 (2005). CASPubMed Google Scholar
Dengjel, J. et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA102, 7922–7927 (2005). CASPubMedPubMed Central Google Scholar
Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity26, 79–92 (2007). CASPubMed Google Scholar
Tewari, M.K., Sinnathamby, G., Rajagopal, D. & Eisenlohr, L.C. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat. Immunol.6, 287–294 (2005). CASPubMed Google Scholar