TOX: an HMG box protein implicated in the regulation of thymocyte selection (original) (raw)
Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol.17, 829–874 (1999). ArticleCASPubMed Google Scholar
Basson, M. A. & Zamoyska, R. The CD4/CD8 lineage decision: integration of signaling pathways. Immunol. Today21, 509–514 (2000). ArticleCASPubMed Google Scholar
Shao, H., Wilkinson, B., Lee, B., Han, P. C. & Kaye, J. Slow accumulation of active mitogen-activated protein kinase during thymocyte differentiation regulates the temporal pattern of transcription factor gene expression. J. Immunol.163, 603–610 (1999). CASPubMed Google Scholar
Wilkinson, B. & Kaye, J. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model. Cell. Immunol.211, 86–95 (2001). ArticleCASPubMed Google Scholar
Wen, L., Huang, J. K., Johnson, B. H. & Reeck, G. R. A human placental cDNA clone that encodes nonhistone chromosomal protein HMG-1. Nucleic Acids Res.17, 1197–1214 (1989). ArticleCASPubMedPubMed Central Google Scholar
Jantzen, H. M., Admon, A., Bell, S. P. & Tjian, R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature344, 830–836 (1990). ArticleCASPubMed Google Scholar
Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature346, 245–250 (1990). ArticleCASPubMed Google Scholar
Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature346, 240–244 (1990). ArticleCASPubMed Google Scholar
Soullier, S. et al. Diversification pattern of the HMG and SOX family members during evolution. Mol. Evol.48, 517–527 (1999). ArticleCAS Google Scholar
Oosterwegel, M. et al. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor α enhancers. J. Exp. Med.173, 1133–1142 (1991). ArticleCASPubMed Google Scholar
Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor α enhancer function. Genes Dev.5, 880–894 (1991). ArticleCASPubMed Google Scholar
van de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J.10, 123–132 (1991). ArticleCASPubMedPubMed Central Google Scholar
Waterman, M. L., Fischer, W. H. & Jones, K. A. A thymus-specific member of the HMG protein family regulates the human T cell receptor C α enhancer. Genes Dev.5, 656–669 (1991). ArticleCASPubMed Google Scholar
Iwata, M., Kuwata, T., Mukai, M., Tozawa, Y. & Yokoyama, M. Differential induction of helper and killer T cells from isolated CD4+CD8+ thymocytes in suspension culture. Eur. J. Immunol.26, 2081–2086 (1996). ArticleCASPubMed Google Scholar
Ohoka, Y. et al. In vitro differentiation and commitment of CD4+CD8+ thymocytes to the CD4 lineage without TCR engagement. Int. Immunol.8, 297–306 (1996). ArticleCASPubMed Google Scholar
Ohaka, Y. et al. Regulation of thymocyte lineage commitment by the level of classical protein kinase C activity. J. Immunol.158, 5707–5716 (1997). Google Scholar
Takahama, Y. & Nakauchi, H. Phorbol ester and calcium ionophore can replace TCR signals that induce positive selection of CD4 T cells. J. Immunol.157, 1508–1513 (1996). CASPubMed Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCASPubMed Google Scholar
Madden, T. L., Tatusov, R. L. & Zhang, J. Applications of network BLAST server. Meth. Enzymol.266, 131–141 (1996). ArticleCAS Google Scholar
Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res.5, 277–286 (1998). ArticleCASPubMed Google Scholar
Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell64, 615–623 (1991). ArticleCASPubMed Google Scholar
Suzuki, H., Punt, J. A., Granger, L. G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity2, 413–425 (1995). ArticleCASPubMed Google Scholar
Lucas, B. & Germain, R. N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity5, 461–477 (1996). ArticleCASPubMed Google Scholar
Mombaerts, P. et al. Mutations in T cell antigen receptor genes α and β block thymocyte development at different stages. Nature360, 225–231 (1992). ArticleCASPubMed Google Scholar
Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature341, 746–749 (1989). ArticleCASPubMed Google Scholar
Sha, W. C. et al. Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature336, 271–274 (1988). Article Google Scholar
Grusby, M. J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl Acad. Sci. USA90, 3913–3917 (1993). ArticleCASPubMedPubMed Central Google Scholar
Pérarnau, B. et al. Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and antilymphocytic choriomeningitis virus cytolytic responses. Eur. J. Immunol.29, 1243–1252 (1999). ArticlePubMed Google Scholar
Grusby, M. J., Johnson, R. S., Papaioannou, V. E. & Glimcher, L. H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science253, 1417–1420 (1991). ArticleCASPubMed Google Scholar
Yamashita, I., Nagata, T., Tada, T. & Nakayama, T. CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor-mediated positive selection. Int. Immunol.5, 1139–1150 (1993). ArticleCASPubMed Google Scholar
Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol.150, 4244–4252 (1993). CASPubMed Google Scholar
Godfrey, D. I., Kennedy, J., Mombaerts, P., Tonegawa, S. & Zlotnik, A. Onset of TCR-β gene rearrangement and role of TCR-β expression during CD3−CD4−CD8− thymocyte differentiation. J. Immunol.152, 4783–4792 (1994). CASPubMed Google Scholar
Penit, C., Lucas, B. & Vasseur, F. Cell expansion and growth arrest phases during the transition from precursor (CD4−8−) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol.154, 5103–5113 (1995). CASPubMed Google Scholar
Shinkai, Y. et al. RAG-2 deficient mice lack mature lymphocytes owing to inability to initiateV(D)J rearrangement. Cell68, 855–867 (1992). ArticleCASPubMed Google Scholar
Shao, H., Kono, D. H., Chen, L-Y., Rubin, E. M. & Kaye, J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J. Exp. Med.185, 731–744 (1997). ArticleCASPubMedPubMed Central Google Scholar
Linette, G. P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity1, 197–205 (1994). ArticleCASPubMed Google Scholar
Tao, W. et al. The T cell receptor repertoire of CD4−CD8+ thymocytes is altered by overexpression of the bcl-2 protooncogene in the thymus. J. Exp. Med.179, 145–153 (1994). ArticleCASPubMed Google Scholar
Deftos, M. L., He, Y. W., Ojala, E. W. & Bevan, M. J. Correlating notch signaling with thymocyte maturation. Immunity9, 777–786 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jameson, S. C., Kaye, J. & Gascoigne, N. R. A T cell receptor V α region selectively expressed in CD4+ cells. J. Immunol.145, 1324–1331 (1990). CASPubMed Google Scholar
Utsunomiya, Y. et al. Analysis of a monoclonal rat antibody directed to the α-chain variable region (V α 3) of the mouse T cell antigen receptor. J. Immunol.143, 2602–2608 (1989). CASPubMed Google Scholar
Yasutomo, K. et al. The duration of antigen receptor signalling determines CD4+versus CD8+ T-cell lineage fate. Nature404, 506–510 (2000). ArticleCASPubMed Google Scholar
Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity13, 59–71 (2000). ArticleCASPubMed Google Scholar
Tarakhovsky, A., Muller, W. & Rajewsky, K. Lymphocyte populations and immune responses in CD5-deficient mice. Eur. J. Immunol.24, 1678–1684 (1994). ArticleCASPubMed Google Scholar
Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science269, 535–537 (1995). ArticleCASPubMed Google Scholar
Pena-Rossi, C. et al. Negative regulation of CD4 lineage development and responses by CD5. J. Immunol.163, 6494–6501 (1999). CASPubMed Google Scholar
Azzam, H. S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med.188, 2301–2311 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shimonkevitz, R., Kappler, J., Marrack, P. & Grey, H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J. Exp. Med.158, 303–316 (1983). ArticleCASPubMed Google Scholar
Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science250, 1720–1723 (1990). ArticleCASPubMed Google Scholar
Liu, C. P., Kappler, J. W. & Marrack, P. Thymocytes can become mature T cells without passing through the CD4+ CD8+, double-positive stage. J. Exp. Med.184, 1619–1630 (1996). ArticleCASPubMed Google Scholar
Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2m MHC class I proteins and CD8+ T cells. Science248, 1227–1230 (1990). ArticleCASPubMed Google Scholar
Zijlstra, M. et al. β2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature344,742–746 (1990). ArticleCASPubMed Google Scholar
Kolodrubetz, D. & Burgum, A. Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J. Biol. Chem.265, 3234–3239 (1990). CASPubMed Google Scholar
Margolis, R. L. et al. cDNAs with long CAG trinucleotide repeats from human brain. Hum. Genet.100, 114–122 (1997). ArticleCASPubMed Google Scholar
Kuo, C. T. & Leiden, J. M. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol.17, 149–187 (1999). ArticleCASPubMed Google Scholar
Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin-TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nature Immunol.2, 691–697 (2001). ArticleCAS Google Scholar
Winandy, S., Wu, L., Wang, J. H. & Georgopoulos, K. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J. Exp. Med.190, 1039–1048 (1999). ArticleCASPubMedPubMed Central Google Scholar
Avitahl, N. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity10, 333–343 (1999). ArticleCASPubMed Google Scholar
Dutz, J. P., Ong, C. J., Marth, J. & Teh, H. S. Distinct differentiative stages of CD4+CD8+ thymocyte development defined by the lack of coreceptor binding in positive selection. J. Immunol.154, 2588–2599 (1995). CASPubMed Google Scholar
Chaffin, K. E. et al. Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J.9, 3821–3829 (1990). ArticleCASPubMedPubMed Central Google Scholar