Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide–MHC class II chimera (original) (raw)
Buzzetti, R., Quattrocchi, C. C. & Nistico, L. Dissecting the genetics of Type 1 Diabetes: relevance for the familial clustering and differences in incidence. Diabetes Metab. Rev.14, 111–128 (1998). ArticleCAS Google Scholar
Nepon, G. T. & Erlich, H. MHC class-II molecules and autoimmunity. Annu. Rev. Immunol.9, 493–525 (1991). Article Google Scholar
Miyakazi, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of prediabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol.60, 622–625 (1985). Google Scholar
Like, A. A., Kislaukis, E., Williams, R. R. & Rossini, A. A. Neonatal thymectomy prevents spontaneous diabetes in the BB/W rat. Science216, 644–646 (1982). ArticleCAS Google Scholar
Herold, K. C., Montag, A. G. & Buckingham, F. Induction of tolerance to autoimmune diabetes with islet antigens. J. Exp. Med.176, 1107–1114 (1992). ArticleCAS Google Scholar
Serreze, D. V., Leiter, E. H., Worthen, S. M. & Shultz, L. D. NOD marrow stem cells adoptively transfer diabetes to resistant (NOD X NON)F1 mice. Diabetes37, 252–255 (1988). ArticleCAS Google Scholar
Wicker, L. S., Miller, B. J. & Muller, Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes35, 855–860 (1986). ArticleCAS Google Scholar
Peterson, J. D., Pike, B., McDuffie, M. & Haskins, K. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice. J. Immunol.153, 2800–2806 (1994). CASPubMed Google Scholar
Zekzer, D. et al. Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes46, 1124–1132 (1997). ArticleCAS Google Scholar
Bowman, M. A., Leiter, E. H. & Atkinson, M. A. Prevention of diabetes in the NOD mouse: implications for therapeutic intervention in human disease. Immunol. Today15, 115–120 (1994). ArticleCAS Google Scholar
Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med.186, 1663–1676 (1997). ArticleCAS Google Scholar
Bach, J. F. Insulin dependent diabetes as an autoimmune disease. Endocr. Rev.15, 516–542 (1994). ArticleCAS Google Scholar
Cameron, M. J. et al. IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J. Immunol.159, 4686–4692 (1997). CASPubMed Google Scholar
Nitta, Y. et al. Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Hum. Gene Ther.9, 1701–1707 (1998). ArticleCAS Google Scholar
Nicoletti, F. et al. Early prophylaxis with recombinant human interleukin-11 prevents spontaneous diabetes in NOD mice. Diabetes48, 2333–2339 (1999). ArticleCAS Google Scholar
Zaccone, P. et al. Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes48, 1522–1528 (1999). ArticleCAS Google Scholar
Piccirillo, C. A., Chang, Y. & Prud' homme, G. J. TGF-β1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J. Immunol.161, 3950–3956 (1998). CASPubMed Google Scholar
Yang, X. D. et al. Effect of tumor necrosis factor α on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J. Exp. Med.180, 995–1004 (1994). ArticleCAS Google Scholar
Herold, K. C. et al. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes41, 457–464 (1992). Article Google Scholar
Wang, Y., Hao, L., Gill, R. G. & Lafferty, K. J. Autoimmune diabetes in NOD mouse is L3T4 T-lymphocyte dependent. Diabetes36, 535–538 (1987). ArticleCAS Google Scholar
Shizuku, J. A., Taylor-Edwards, C., Banks, B. A., Gregory, A. K. & Fathman, C. G. Immunotherapy of the nonobese mouse: Treatment with an antibody to T-helper lymphocytes. Science240, 659–662 (1988). Article Google Scholar
Kuttler, B., Rosing, K., Lehmann, M., Brock, J. & Hahn, H. J. Prevention of autoimmune but not allogeneic destruction of grafted islets by different therapeutic strategies. J. Mol. Med.77, 226–229 (1999). ArticleCAS Google Scholar
Balasa, B. et al. CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J. Immunol.159, 4620–4627 (1997). CASPubMed Google Scholar
Lenschow, D. J. et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med.181, 1145–1155 (1995). ArticleCAS Google Scholar
Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B9-23. Proc. Natl Acad. Sci. USA93, 956–960 (1996). ArticleCAS Google Scholar
Tian, J. et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces TH2 responses and prevents murine insulin-dependent diabetes mellitus. J. Exp. Med.183, 1561–1567 (1996). ArticleCAS Google Scholar
Tian, R. et al. Modulating autoimmune responses to GAD inhibits disease progression and prolongs graft survival in diabetes-prone mice. Nature Med.2, 1384–1353 (1996). Article Google Scholar
Maron, R., Melican, N. S. & Weiner, H. L. Regulatory TH2-type T cell lines against insulin and GAD peptides derived from orally- and nasally-treated NOD mice suppress diabetes. J. Autoimmun.12, 251–258 (1999). ArticleCAS Google Scholar
Tisch, T., Wang, B. & Serreze, D. V. Induction of glutamic acid decarboxylase 65-specific TH2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol.163, 1178–1187 (1999). CASPubMed Google Scholar
Elias, D. et al. Vaccination against autoimmune mouse diabetes in young NOD mice with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA88, 3088–3091 (1991). ArticleCAS Google Scholar
Bockova, J., Elias, D. & Cohen, I. R. Treatment of NOD diabetes with a novel peptide of the hsp60 molecule induces TH2-type antibodies. J. Autoimmun.10, 323–329 (1997). ArticleCAS Google Scholar
Petersen, J. S. et al. Treatment with GAD65 or BSA does not protect against diabetes in BB rats. Autoimmunity25, 129–138 (1997). ArticleCAS Google Scholar
Funda, D. P., Hartoft-Nielsen, M. L. Kaas, A. & Buschard, K. Effect of intrathymic administration of mycobacterial heat shock protein 65 and peptide p277 on the development of diabetes in NOD mice: caution required in vaccination studies. APMIS106, 1009–1016 (1998). ArticleCAS Google Scholar
Ishioka, G. Y. et al. Failure to demonstrate ling-lived MHC saturation both in vitro and in vivo. Implications for therapeutic potential of MHC-blocking peptides. J. Immunol.152, 4310–4319 (1994). CASPubMed Google Scholar
Casares, S., Bot, A., Brumeanu, T.-D. & Bona, C. A. Foreign peptides expressed in engineered chimeric self molecules. Biotech. Genet. Engineer. Rev.15, 159–198 (1998). ArticleCAS Google Scholar
Casares, S., Bona, C. A. & Brumeanu, T.-D. Engineering and characterization of a murine MHC-immunoglobulin chimera expressing an immunodominant CD4 T viral epitope. Protein Engineer.10, 1295–1301 (1997). ArticleCAS Google Scholar
Brumeanu, T. D., Bona, C. A. & Casares, S. T cell tolerance and autoimmune diabetes. Int. Rev. Immunol.20, 301–323 (2001). ArticleCAS Google Scholar
Casares, S., Bona, C. A. & Brumeanu, T. D. Enzymatically mediated engineering of multivalent MHC class II-peptide chimeras. Protein Engineer.14, 195–200 (2001). ArticleCAS Google Scholar
Casares, S. et al. Antigen specific signaling by a soluble dimeric peptide-MHC class II-Fc chimera leading to TH2 differentiation. J. Exp. Med.190, 543–553 (1999). ArticleCAS Google Scholar
Hamad, A. R. et al. Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med.188, 1633–1640 (1998). ArticleCAS Google Scholar
Appel, H., Gauthier, L., Pyrdol, J. & Wucherpfennig, K. W. Kinetic of T cell receptor binding by bivalent HLA-DR/peptide complexes that activate antigen-specific human T cells. J. Biol. Chem.275, 312–321 (2000). ArticleCAS Google Scholar
Appel, H., Seth, N. P., Gauthier, L. & Wucherpfennig, K. W. Anergy induction by dimeric TCR ligands. J. Immunol.166, 5279–5285 (2001). ArticleCAS Google Scholar
Radu, D., Brumeanu, T.-D., McEvoy, R. C., Bona, C. A. & Casares, S. Escape from natural self-tolerance leads to neonatal insulin-dependent diabetes mellitus. Autoimmunity30, 199–207 (1999). ArticleCAS Google Scholar
Sarukhan, A. et al. Changes in function of antigen-specific lymphocytes correlating with progression towards diabetes in a transgenic model. EMBO J.17, 71–80 (1998). ArticleCAS Google Scholar
Scott, B. et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity1, 73–83 (1994). ArticleCAS Google Scholar
Lo, D. et al. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur. J. Immunol.22, 1013–1022 (1992). ArticleCAS Google Scholar
Bot, A., Casares, S., Bot, S., von Boehmer, H. & Bona, C. A. Cellular mechanisms involved in protection against influenza virus infection in transgenic mice expressing a TCR specific for class-II hemagglutinin peptide in CD4+ and CD8+ T cells. J. Immunol.160, 4500–4507 (1998). CASPubMed Google Scholar
Sarukhan, A., Garcia, C., Lanoue, A. & von Boehmer, H. Allelic inclusion of T cell receptor alpha genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity6, 563–570 (1998). Article Google Scholar
Levings, M. K. & Roncarolo, M. G. T-regulatory 1 cells: a novel subset of CD4 T cells with immunomodulatory properties. J. Allergy Clin. Immunol.106, 109–112 (2000). Article Google Scholar
Rabinovitch, A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab. Rev.14, 129–151 (1998). ArticleCAS Google Scholar
Ravetch, J. V. & Bolland, S. IgG Fc receptors. Ann. Rev. Immunol.19, 275–290 (2001). ArticleCAS Google Scholar
Weil, R. & Veillette, A. Signal transduction by the lymphocyte-specific tyrosine protein kinase p56lck. Curr. Top. Microbiol. Immunol.205, 63–87 (1996). CASPubMed Google Scholar
La Face, D. M. et al. Differential T cell signaling induced by antagonist peptide-MHC complexes and the associated phenotypic responses. J. Immunol.158, 2057–2064 (1997). CASPubMed Google Scholar
Faith, A. et al. An altered peptide ligand inhibits TH2 cytokine synthesis by abrogating TCR signaling. J. Immunol.162, 1836–1842 (1999). CASPubMed Google Scholar
Migita, K. et al. Defective TCR-mediated signaling in anergic T cells. J. Immunol.155, 5083–5087 (1995). CASPubMed Google Scholar
Madrenas, J., Chau, L. A., Smith, J., Bluestone, J. A. & Germain, R. N. The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J. Exp. Med.185, 219–229 (1997). ArticleCAS Google Scholar
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737–742 (1997). ArticleCAS Google Scholar
Frey, M. et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol,161, 400–408 (1998). CAS Google Scholar
Bruunsgaard, H., Pedersen, A. N., Schroll, M., Skinhoj, P. & Pedersen, B. K. Proliferative responses of blood mononuclear cells (PBMC) in a cohort of elderly humans: role of lymphocyte phenotype and cytokine production. Clin. Exp. Immunol.119, 433–440 (2000). ArticleCAS Google Scholar
Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4 T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol,164, 240–247 (2000). ArticleCAS Google Scholar
Seddon, B., Saoudi, A., Nicholson, M. & Mason, D. CD4+CD8− thymocytes that express L-selectin protect rats from diabetes upon adoptive transfer. Eur. J. Immunol.26, 2702–2708 (1996). ArticleCAS Google Scholar
Alleva, D. G. et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest.107, 173–180 (2001). ArticleCAS Google Scholar
Wicker, L. S. et al. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele DRB1*0401. J. Clin. Invest.98, 2597–2603 (1996). ArticleCAS Google Scholar
Endl, J. et al. Identification of naturally processed T cells epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J. Clin. Invest.99, 2405–2415 (1997). ArticleCAS Google Scholar
Patel, S. D. et al. Identification of immunodominant T cell epitopes of human glutamic acid decarboxylase 65 by using HLA–DR(α1*0101,β1*0401) transgenic mice. Proc. Natl Acad. Sci. USA94, 8082–8087 (1997). ArticleCAS Google Scholar