Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells (original) (raw)
Artavanis, T. S., Matsuno, K. & Fortini, M. E. Notch signaling. Science268, 225–232 (1995). Article Google Scholar
Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature393, 382–386 (1998). ArticleCAS Google Scholar
Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell93, 649–660 (1998). ArticleCAS Google Scholar
Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-Jκ/Su(H). Curr. Biol.5, 1416–1423 (1995). ArticleCAS Google Scholar
Kato, H. et al. Functional conservation of mouse Notch receptor family members. FEBS Lett.395, 221–224 (1996). ArticleCAS Google Scholar
Kurooka, H., Kuroda, K. & Honjo, T. Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res.26, 5448–5455 (1998). ArticleCAS Google Scholar
de la Pompa, J. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development124, 1139–1148 (1997). CASPubMed Google Scholar
Kuroda, K. et al. Δ-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J. Biol. Chem.274, 72138–7244 (1999). Article Google Scholar
Ohtsuka, T. et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J.18, 2196–2207 (1999). ArticleCAS Google Scholar
Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med.192, 1365–1372 (2000). ArticleCAS Google Scholar
Li, L. et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity8, 43–55 (1998). ArticleCAS Google Scholar
Schroeder, T. & Just, U. Notch signalling via RBP-J promotes myeloid differentiation. EMBO J.19, 2558–2568 (2000). ArticleCAS Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCAS Google Scholar
Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity11, 299–308 (1999). ArticleCAS Google Scholar
Hua, H. et al. Inducible gene knockout of transcription factor RBP-J reveals its essential role in T versus B lineage decision. Int. Immunol. (in the press, 2002).
Morimura, T. et al. Cell cycle arrest and apoptosis induced by Notch1 in B cells. J. Biol. Chem.275, 36523–36531 (2000). ArticleCAS Google Scholar
Strobl, L. J. et al. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J. Virol.74, 1727–1735 (2000). ArticleCAS Google Scholar
Morimura, T., Miyatani, S., Kitamura, D. & Goitsuka, R. Notch signaling suppresses IgH gene expression in chicken B cells: implication in spatially restricted expression of Serrate2/Notch1 in the bursa of Fabricius. J. Immunol.166, 3277–3283 (2001). ArticleCAS Google Scholar
Rajewsky, K. Clonal selection and learning in the antibody system. Nature381, 751–758 (1996). ArticleCAS Google Scholar
Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med.190, 75–89 (1999). ArticleCAS Google Scholar
Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1 high B cells: a population of mixed origin. Eur. J. Immunol.29, 3285–3294 (1999). ArticleCAS Google Scholar
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity12, 39–49 (2000). ArticleCAS Google Scholar
Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol.1, 31–36 (2001). Article Google Scholar
Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity5, 603–615 (2001). Article Google Scholar
Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature412, 826–831 (2001). ArticleCAS Google Scholar
Girkontaite, I. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nature Immunol.9, 855–862 (2001). Article Google Scholar
Oka, C. et al. Disruption of the mouse RBP-J κ gene results in early embryonic death. Development121, 3291–3301 (1995). CASPubMed Google Scholar
Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res.25, 1317–1318 (1997). ArticleCAS Google Scholar
Betz, U. A., Vosshenrich, C. A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol.6, 1307–1316 (1996). ArticleCAS Google Scholar
Roark, J. H. et al. CD1. 1 expression by mouse antigen-presenting cells and marginal zone B cells. J. Immunol.160, 3121–3127 (1998). CASPubMed Google Scholar
Won, W. J., Masuda. K., Kearney, J. F. CD9 is a novel marker that dicriminates between marginal zone and follicular B cells. FASEB J.14, 1191 (2000). Google Scholar
Radkov, S. A. et al. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J. Virol.71, 8552–8562 (1997). CASPubMedPubMed Central Google Scholar
Morelli, A. E. et al. Recombinant adenovirus induces maturation of dendritic cells via an NF-κB-dependent pathway. J. Virol.74, 9617–9628 (2000). ArticleCAS Google Scholar
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science288, 2222–2226 (2001). Article Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995). ArticleCAS Google Scholar
Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol.27, 2366–2374 (1997). ArticleCAS Google Scholar
Bang, A. G., Bailey, A. M. & Posakony, J. W. Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway. Dev. Biol.172, 479–494 (1995). ArticleCAS Google Scholar
Cariappa, A., Liou, H. C., Horwitz, B. H. & Pillai, S. Nuclear factor κB is required for the development of marginal zone B lymphocytes. J. Exp. Med.192, 1175–1182 (2000). ArticleCAS Google Scholar
Rickert, R. C., Rajewsky, K. & Roes, J. B Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature376, 352–355 (1995). ArticleCAS Google Scholar
Sato, S., Steeber, D. A., Jansen, P. J. & Tedder, T. F. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J. Immunol.158, 4662–4669 (1997). CASPubMed Google Scholar
Weih, D., Yilmaz, Z. & Weih, F. Essential role of rel-B in germinal center and marginal zone formation and proper expression of homing chemokines. J. Immunol.167, 1909–1919 (2001). ArticleCAS Google Scholar
Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity9, 543–553 (1998). ArticleCAS Google Scholar
Dunn, W. D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med.182, 559–566 (1995). Article Google Scholar
Martin, F. & Kearney, J. F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol.13, 195–201 (2001). ArticleCAS Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). ArticleCAS Google Scholar
Nakane, A., Okamoto, M., Asano, M., Kohanawa, M. & Minagawa, T. Endogenous γ interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. Infect. Immun.63, 1165–1172 (1995). CASPubMedPubMed Central Google Scholar
deVos, T. & Dick, T. A. A rapid method to determine the isotype and specificity of coproantibodies in mice infected with Trichinella or fed cholera toxin. J. Immunol. Meth.141, 285–8 (1991). ArticleCAS Google Scholar
Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res.23, 3816–3821 (1995). ArticleCAS Google Scholar
Tun, T. et al. Recognition sequence of a highly conserved DNA binding protein RBP-J κ. Nucleic Acids Res.22, 965–971 (1994). ArticleCAS Google Scholar
Zimber, S. U. et al. Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jκ, the homologue of Drosophila Suppressor of Hairless. EMBO J.13, 4973–4982 (1994). Article Google Scholar
Sakai, T. et al. Loss of immunostaining of the RBP-J κ transcription factor upon F9 cell differentiation induced by retinoic acid. J. Biochem. (Tokyo)118, 621–628 (1995). ArticleCAS Google Scholar