Hansson, G.K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol.6, 508–519 (2006). ArticlePubMedCAS Google Scholar
Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: the discovery of the statins and the end of the controversy. J. Lipid Res.47, 1339–1351 (2006). ArticleCASPubMed Google Scholar
Shah, P.K. Molecular mechanisms of plaque instability. Curr. Opin. Lipidol.18, 492–499 (2007). ArticleCASPubMed Google Scholar
Kolodgie, F.D. et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med.349, 2316–2325 (2003). ArticlePubMedCAS Google Scholar
Virmani, R. et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.20, 1262–1275 (2000). ArticlePubMedCAS Google Scholar
Spagnoli, L.G. et al. Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. J. Am. Med. Assoc.292, 1845–1852 (2004). ArticleCAS Google Scholar
McIntyre, T.M. et al. Biologically active oxidized phospholipids. J. Biol. Chem.274, 25189–25192 (1999). ArticlePubMedCAS Google Scholar
Prescott, S.M. et al. Platelet-activating factor and related lipid mediators. Annu. Rev. Biochem.69, 419–445 (2000). ArticlePubMedCAS Google Scholar
Macphee, C.H., Nelson, J.J. & Zalewski, A. Lipoprotein-associated phospholipase A2 as a target of therapy. Curr. Opin. Lipidol.16, 442–446 (2005). ArticlePubMedCAS Google Scholar
Zalewski, A. & Macphee, C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler. Thromb. Vasc. Biol.25, 923–931 (2005). ArticleCASPubMed Google Scholar
Tsimikas, S., Tsironis, L.D. & Tselepis, A.D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.27, 2094–2099 (2007). ArticlePubMedCAS Google Scholar
Garza, C.A. et al. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clin. Proc.82, 159–165 (2007). ArticleCASPubMed Google Scholar
Macphee, C.H. et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem. J.338, 479–487 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Davis, B. et al. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J. Biol. Chem.283, 6428–6437 (2008). ArticlePubMedCAS Google Scholar
Kougias, P. et al. Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis. Med. Sci. Monit.12, RA5–RA16 (2006). PubMedCAS Google Scholar
Shi, Y. et al. Role of lipoprotein-associated phospholipase A2 in leukocyte activation and inflammatory responses. Atherosclerosis191, 54–62 (2007). ArticlePubMedCAS Google Scholar
Carpenter, K.L. et al. Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARγ. FEBS Lett.553, 145–150 (2003). ArticlePubMedCAS Google Scholar
Perez, R. et al. Involvement of group VIA calcium-independent phospholipase A2 in macrophage engulfment of hydrogen peroxide–treated U937 cells. J. Immunol.176, 2555–2561 (2006). ArticlePubMedCAS Google Scholar
Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med.199, 1121–1131 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Kolodgie, F.D. et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26, 2523–2529 (2006). ArticleCASPubMed Google Scholar
Blackie, J.A. et al. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2 . Bioorg. Med. Chem. Lett.13, 1067–1070 (2003). ArticlePubMedCAS Google Scholar
Gerrity, R.G. et al. Diabetes-induced accelerated atherosclerosis in swine. Diabetes50, 1654–1665 (2001). ArticlePubMedCAS Google Scholar
Mohler, E.R., III et al. Site-specific atherogenic gene expression correlates with subsequent variable lesion development in coronary and peripheral vasculature. Arterioscler. Thromb. Vasc. Biol.28, 850–855 (2008). ArticlePubMedCAS Google Scholar
Chatzizisis, Y.S. et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular and vascular behavior. J. Am. Coll. Cardiol.49, 2379–2393 (2007). ArticlePubMedCAS Google Scholar
Jo, H. et al. Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis. Antioxid. Redox Signal.8, 1609–1619 (2006). ArticlePubMedCAS Google Scholar
Schaloske, R.H. & Dennis, E.A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta1761, 1246–1259 (2006). ArticlePubMedCAS Google Scholar
Gardner, A.A., Reichert, E.C., Topham, M.K. & Stafforini, D.M. Identification of a domain that mediates association of platelet-activating factor acetylhydrolase with high-density lipoprotein. J. Biol. Chem.283, 17099–17106 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Stafforini, D.M. et al. Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. J. Biol. Chem.274, 7018–7024 (1999). ArticlePubMedCAS Google Scholar
Heller, E.A. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation113, 2301–2312 (2006). ArticlePubMedCAS Google Scholar
Swirski, F.K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest.117, 195–205 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Papaspyridonos, M. et al. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol.26, 1837–1844 (2006). ArticlePubMedCAS Google Scholar
Reddy, V.y., Zhang, Z.-Y. & Weiss, S.J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L and S by human monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA92, 3849–3853 (1995). ArticlePubMedCASPubMed Central Google Scholar
Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5693 people with diabetes: a randomized placebo-controlled trial. Lancet361, 2005–2013 (2003).
Moreno, P.R. et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation102, 2180–2184 (2000). ArticlePubMedCAS Google Scholar
Burke, A.P. et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Thromb. Vasc. Biol.24, 1266–1271 (2004). ArticlePubMedCAS Google Scholar
Pennathur, S. & Heinecke, J.W. Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid. Redox Signal.9, 955–969 (2007). ArticlePubMedCAS Google Scholar
Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5 and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest.117, 185–194 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Navab, M. et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res.45, 993–1007 (2004). ArticlePubMedCAS Google Scholar
Sangvanich, P., Mackness, B., Gaskell, S.J., Durrington, P. & Mackness, M. The effect of high-density lipoproteins on the formation of lipid/protein conjugates during in vitro oxidation of low-density lipoprotein. Biochem. Biophys. Res. Commun.300, 501–506 (2003). ArticlePubMedCAS Google Scholar
Getz, G.S. & Reardon, C.A. Diet and murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26, 242–249 (2006). ArticlePubMedCAS Google Scholar
Caslake, M.J. et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis150, 413–419 (2000). ArticlePubMedCAS Google Scholar
Van Eck, M. et al. Bone marrow transplantation in apolipoprotein E–deficient mice. Effect of ApoE gene dosage on serum lipid concentrations, βVLDL catabolism, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol.17, 3117–3126 (1997). ArticlePubMedCAS Google Scholar
Singer, A.G. et al. Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X and XII secreted phospholipases A2 . J. Biol. Chem.277, 48535–48549 (2002). ArticlePubMedCAS Google Scholar
Smart, B.P. et al. Inhibition of the complete set of mammalian secreted phospholipases A2 by indole analogues: a structure-guided study. Bioorg. Med. Chem.12, 1737–1749 (2004). ArticlePubMedCAS Google Scholar