Walter, J.W. et al. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosom. Cancer33, 295–303 (2002). ArticleCAS Google Scholar
North, P.E., Waner, M., Mizeracki, A. & Mihm, M.C., Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum. Pathol.31, 11–22 (2000). ArticleCAS Google Scholar
Li, Q., Yu, Y., Bischoff, J., Mulliken, J.B. & Olsen, B.R. Differential expression of CD146 in tissues and endothelial cells derived from infantile hemangiomas and normal human skin. J. Pathol.201, 296–302 (2003). ArticleCAS Google Scholar
Barnes, C.M. et al. Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc. Natl. Acad. Sci. USA102, 19097–19102 (2005). ArticleCAS Google Scholar
North, P.E. et al. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch. Dermatol.137, 559–570 (2001). ArticleCAS Google Scholar
Chiller, K.G., Passaro, D. & Frieden, I.J. Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity and sex. Arch. Dermatol.138, 1567–1576 (2002). Article Google Scholar
Haggstrom, A.N. et al. Prospective study of infantile hemangiomas: demographic, prenatal and perinatal characteristics. J. Pediatr.150, 291–294 (2007). Article Google Scholar
Ferrara, N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS94, 209–231 (2005). Google Scholar
Roberts, D.M. et al. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am. J. Pathol.164, 1531–1535 (2004). ArticleCAS Google Scholar
Bradley, K.A., Mogridge, J., Mourez, M., Collier, R.J. & Young, J.A. Identification of the cellular receptor for anthrax toxin. Nature414, 225–229 (2001). ArticleCAS Google Scholar
Werner, E., Kowalczyk, A.P. & Faundez, V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J. Biol. Chem.281, 23227–23236 (2006). ArticleCAS Google Scholar
Inoue, T. et al. Identification of a vascular endothelial growth factor (VEGF) antagonist, sFlt-1, from a human hematopoietic cell line NALM-16. FEBS Lett.469, 14–18 (2000). ArticleCAS Google Scholar
Ito, N., Huang, K. & Claesson-Welsh, L. Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell. Signal.13, 849–854 (2001). ArticleCAS Google Scholar
Wakiya, K., Begue, A., Stehelin, D. & Shibuya, M. A cAMP response element and an Ets motif are involved in the transcriptional regulation of flt-1 tyrosine kinase (vascular endothelial growth factor receptor 1) gene. J. Biol. Chem.271, 30823–30828 (1996). ArticleCAS Google Scholar
Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin and NFAT. Genes Dev.17, 2205–2232 (2003). ArticleCAS Google Scholar
Hesser, B.A. et al. Down syndrome critical region protein 1 (DSCR1), a novel VEGF target gene that regulates expression of inflammatory markers on activated endothelial cells. Blood104, 149–158 (2004). ArticleCAS Google Scholar
Hernandez, G.L. et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med.193, 607–620 (2001). ArticleCAS Google Scholar
Satonaka, H. et al. Calcineurin promotes the expression of monocyte chemoattractant protein-1 in vascular myocytes and mediates vascular inflammation. Circ. Res.94, 693–700 (2004). ArticleCAS Google Scholar
Schwartz, M.A. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J. Cell Biol.120, 1003–1010 (1993). ArticleCAS Google Scholar
Leavesley, D.I., Schwartz, M.A., Rosenfeld, M. & Cheresh, D.A. Integrin β1- and β3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J. Cell Biol.121, 163–170 (1993). ArticleCAS Google Scholar
Jones, N.P., Peak, J., Brader, S., Eccles, S.A. & Katan, M. PLCγ1 is essential for early events in integrin signalling required for cell motility. J. Cell Sci.118, 2695–2706 (2005). ArticleCAS Google Scholar
Aplin, A.E., Howe, A., Alahari, S.K. & Juliano, R.L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules and selectins. Pharmacol. Rev.50, 197–263 (1998). CASPubMed Google Scholar
Sjaastad, M.D. & Nelson, W.J. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. Bioessays19, 47–55 (1997). ArticleCAS Google Scholar
Luque, A. et al. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common β1 chain. J. Biol. Chem.271, 11067–11075 (1996). ArticleCAS Google Scholar
Schaller, M.D. & Parsons, J.T. Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol.6, 705–710 (1994). ArticleCAS Google Scholar
Guan, J.-L. & Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature358, 690–692 (1992). ArticleCAS Google Scholar
Abu-Ghazaleh, R., Kabir, J., Jia, H., Lobo, M. & Zachary, I. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861 and migration and anti-apoptosis in endothelial cells. Biochem. J.360, 255–264 (2001). ArticleCAS Google Scholar
Blei, F., Walter, J., Orlow, S.J. & Marchuk, D.A. Familial segregation of hemangiomas and vascular malformations as an autosomal dominant trait. Arch. Dermatol.134, 718–722 (1998). ArticleCAS Google Scholar
Shinkai, A. et al. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem.273, 31283–31288 (1998). ArticleCAS Google Scholar
Kuriyama, M. et al. Activation and translocation of PKCδ is necessary for VEGF-induced ERK activation through KDR in HEK293T cells. Biochem. Biophys. Res. Commun.325, 843–851 (2004). ArticleCAS Google Scholar
Sun, Y. et al. The kinase insert domain-containing receptor is an angiogenesis-associated antigen recognized by human cytotoxic T lymphocytes. Blood107, 1476–1483 (2006). ArticleCAS Google Scholar
Shenoy, P.S. et al. beta1 Integrin-extracellular matrix protein interaction modulates the migratory response to chemokine stimulation. Biochem. Cell Biol.79, 399–407 (2001). ArticleCAS Google Scholar
Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell87, 1181–1190 (1996). ArticleCAS Google Scholar
Brouillard, P. et al. Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): evidence for a founder effect. J. Med. Genet.42, e13 (2005). ArticleCAS Google Scholar
North, P.E., Waner, M., Buckmiller, L., James, C.A. & Mihm, M.C. Jr. Vascular tumors of infancy and childhood: beyond capillary hemangioma. Cardiovasc. Pathol.15, 303–317 (2006). Article Google Scholar
Ritter, M.R., Reinisch, J., Friedlander, S.F. & Friedlander, M. Myeloid cells in infantile hemangioma. Am. J. Pathol.168, 621–628 (2006). Article Google Scholar
Takahashi, K. et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J. Clin. Invest.93, 2357–2364 (1994). ArticleCAS Google Scholar
Razon, M.J., Kräling, B.M., Mulliken, J.B. & Bischoff, J. Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation5, 189–195 (1998). ArticleCAS Google Scholar
Akuzawa, N., Kurabayashi, M., Ohyama, Y., Arai, M. & Nagai, R. Zinc finger transcription factor Egr-1 activates Flt-1 gene expression in THP-1 cells on induction for macrophage differentiation. Arterioscler. Thromb. Vasc. Biol.20, 377–384 (2000). ArticleCAS Google Scholar
Fragoso, R. et al. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood107, 1608–1616 (2006). ArticleCAS Google Scholar
Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. Soc. Trans.31, 20–24 (2003). ArticleCAS Google Scholar
Liu, S. & Leppla, S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation and internalization. J. Biol. Chem.278, 5227–5234 (2003). ArticleCAS Google Scholar
Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol.31, 1007–1014 (2003). ArticleCAS Google Scholar
Khan, Z.A. et al. Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood108, 915–921 (2006). ArticleCAS Google Scholar
Picard, A. et al. IFG-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr. Res.63, 263–267 (2008). Article Google Scholar