The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities (original) (raw)
References
Jemal, A. et al. Cancer statistics, 2006. CA Cancer J. Clin.56, 106–130 (2006). Article Google Scholar
Loberg, R.D., Logothetis, C.J., Keller, E.T. & Pienta, K.J. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J. Clin. Oncol.23, 8232–8241 (2005). ArticleCAS Google Scholar
Pienta, K.J. & Smith, D.C. Advances in prostate cancer chemotherapy: a new era begins. CA Cancer J. Clin.55, 300–318 (2005). Article Google Scholar
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCAS Google Scholar
Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med.13, 613–618 (2007). ArticleCAS Google Scholar
Calin, G.A. et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005). ArticleCAS Google Scholar
Calin, G.A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA101, 2999–3004 (2004). ArticleCAS Google Scholar
Esquela-Kerscher, A. & Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer6, 259–269 (2006). ArticleCAS Google Scholar
Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA99, 15524–15529 (2002). ArticleCAS Google Scholar
Dong, J.T., Boyd, J.C. & Frierson, H.F. Jr. Loss of heterozygosity at 13q14 and 13q21 in high-grade, high-stage prostate cancer. Prostate49, 166–171 (2001). ArticleCAS Google Scholar
Hyytinen, E.R., Frierson, H.F., Jr., Boyd, J.C., Chung, L.W. & Dong, J.T. Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosom. Cancer25, 108–114 (1999). ArticleCAS Google Scholar
Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA102, 13944–13949 (2005). ArticleCAS Google Scholar
Yin, Z. et al. Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene18, 7576–7583 (1999). ArticleCAS Google Scholar
Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods4, 721–726 (2007). ArticleCAS Google Scholar
Nupponen, N.N., Hyytinen, E.R., Kallioniemi, A.H. & Visakorpi, T. Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet. Cytogenet.101, 53–57 (1998). ArticleCAS Google Scholar
Bonci, D. et al. 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther.10, 630–636 (2003). ArticleCAS Google Scholar
Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA102, 18081–18086 (2005). ArticleCAS Google Scholar
Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet.25, 217–222 (2000). ArticleCAS Google Scholar
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell127, 469–480 (2006). ArticleCAS Google Scholar
Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature412, 822–826 (2001). ArticleCAS Google Scholar
Almeida, M., Han, L., Bellido, T., Manolagas, S.C. & Kousteni, S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by β-catenin–dependent and –independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J. Biol. Chem.280, 41342–41351 (2005). ArticleCAS Google Scholar
Yun, M.S., Kim, S.E., Jeon, S.H., Lee, J.S. & Choi, K.Y. Both ERK and Wnt/β-catenin pathways are involved in WNT3A-induced proliferation. J. Cell Sci.118, 313–322 (2005). ArticleCAS Google Scholar
Bello, D., Webber, M.M., Kleinman, H.K., Wartinger, D.D. & Rhim, J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis18, 1215–1223 (1997). ArticleCAS Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). Article Google Scholar
Tolcher, A.W. et al. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin. Cancer Res.11, 3854–3861 (2005). ArticleCAS Google Scholar
Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006). ArticleCAS Google Scholar
Navone, N.M., Olive, M. & Troncoso, P. Isolation and culture of prostate cancer cell lines. Methods Mol. Med.88, 121–132 (2004). PubMed Google Scholar
Nelson, P.T. et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA12, 187–191 (2006). ArticleCAS Google Scholar
Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCAS Google Scholar