Kindlin-3 is required for β2 integrin–mediated leukocyte adhesion to endothelial cells (original) (raw)

References

  1. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
    Article CAS Google Scholar
  2. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).
    Article CAS Google Scholar
  3. Alon, R. & Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 561–566 (2003).
    Article CAS Google Scholar
  4. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).
    Article CAS Google Scholar
  5. Anderson, D.C. & Springer, T.A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38, 175–194 (1987).
    Article CAS Google Scholar
  6. Karsan, A. et al. Leukocyte adhesion deficiency type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium. J. Clin. Invest. 101, 2438–2445 (1998).
    Article CAS Google Scholar
  7. Lubke, T. et al. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat. Genet. 28, 73–76 (2001).
    CAS PubMed Google Scholar
  8. Luhn, K., Wild, M.K., Eckhardt, M., Gerardy-Schahn, R. & Vestweber, D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat. Genet. 28, 69–72 (2001).
    CAS PubMed Google Scholar
  9. Sampath, R., Gallagher, P.J. & Pavalko, F.M. Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin. J. Biol. Chem. 273, 33588–33594 (1998).
    Article CAS Google Scholar
  10. Monkley, S.J. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev. Dyn. 219, 560–574 (2000).
    Article CAS Google Scholar
  11. Pasvolsky, R. et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J. Exp. Med. 204, 1571–1582 (2007).
    Article CAS Google Scholar
  12. Bergmeier, W. et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J. Clin. Invest. 117, 1699–1707 (2007).
    Article CAS Google Scholar
  13. Svensson, L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat. Med. advance online publication doi:10.1038/nm.1931 (22 February 2009).
  14. Malinin, N.L. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat. Med. advance online publication doi:10.1038/nm.1917 (22 February 2009).
  15. Kuijpers, T.W. et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 109, 3529–3537 (2007).
    Article CAS Google Scholar
  16. Kuijpers, T.W. et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Invest. 100, 1725–1733 (1997).
    Article CAS Google Scholar
  17. Jobard, F. et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925–935 (2003).
    Article CAS Google Scholar
  18. Montanez, E. et al. Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol. 426, 239–289 (2007).
    Article CAS Google Scholar
  19. Ussar, S., Wang, H.V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).
    Article CAS Google Scholar
  20. Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).
    Article Google Scholar
  21. Scharffetter-Kochanek, K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp. Med. 188, 119–131 (1998).
    Article CAS Google Scholar
  22. Jones, S.L., Knaus, U.G., Bokoch, G.M. & Brown, E.J. Two signaling mechanisms for activation of αM β2 avidity in polymorphonuclear neutrophils. J. Biol. Chem. 273, 10556–10566 (1998).
    Article CAS Google Scholar
  23. Mocsai, A., Zhou, M., Meng, F., Tybulewicz, V.L. & Lowell, C.A. Syk is required for integrin signaling in neutrophils. Immunity 16, 547–558 (2002).
    Article CAS Google Scholar
  24. Nathan, C. et al. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J. Cell Biol. 109, 1341–1349 (1989).
    Article CAS Google Scholar
  25. Frommhold, D. et al. Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. J. Exp. Med. 205, 1435–1446 (2008).
    Article CAS Google Scholar
  26. Smith, M.L., Sperandio, M., Galkina, E.V. & Ley, K. Autoperfused mouse flow chamber reveals synergistic neutrophil accumulation through P-selectin and E-selectin. J. Leukoc. Biol. 76, 985–993 (2004).
    Article CAS Google Scholar
  27. Sperandio, M. et al. Severe impairment of leukocyte rolling in venules of core 2 glucosaminyltransferase-deficient mice. Blood 97, 3812–3819 (2001).
    Article CAS Google Scholar
  28. Sperandio, M., Pickard, J., Unnikrishnan, S., Acton, S.T. & Ley, K. Analysis of leukocyte rolling in vivo and in vitro. Methods Enzymol. 416, 346–371 (2006).
    Article CAS Google Scholar
  29. Pries, A.R. A versatile video image analysis system for microcirculatory research. Int. J. Microcirc. Clin. Exp. 7, 327–345 (1988).
    CAS PubMed Google Scholar
  30. Long, D.S., Smith, M.L., Pries, A.R., Ley, K. & Damiano, E.R. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl. Acad. Sci. USA 101, 10060–10065 (2004).
    Article CAS Google Scholar

Download references