Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis (original) (raw)
Glasson, S.S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature434, 644–648 (2005). ArticleCAS Google Scholar
Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature434, 648–652 (2005). ArticleCAS Google Scholar
Gao, G. et al. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol–anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J. Biol. Chem.279, 10042–10051 (2004). ArticleCAS Google Scholar
Brooks, P.M. The burden of musculoskeletal disease–a global perspective. Clin. Rheumatol.25, 778–781 (2006). Article Google Scholar
Poole, A.R. et al. Proteolysis of the collagen fibril in osteoarthritis. Biochem. Soc. Symp.70, 115–123 (2003). ArticleCAS Google Scholar
Pattoli, M.A., MacMaster, J.F., Gregor, K.R. & Burke, J.R. Collagen and aggrecan degradation is blocked in interleukin-1–treated cartilage explants by an inhibitor of IκB kinase through suppression of metalloproteinase expression. J. Pharmacol. Exp. Ther.315, 382–388 (2005). ArticleCAS Google Scholar
Tortorella, M.D. et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science284, 1664–1666 (1999). ArticleCAS Google Scholar
Abbaszade, I. et al. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem.274, 23443–23450 (1999). ArticleCAS Google Scholar
Bondeson, J., Wainwright, S., Hughes, C. & Caterson, B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin. Exp. Rheumatol.26, 139–145 (2008). CASPubMed Google Scholar
Song, R.H. et al. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum.56, 575–585 (2007). ArticleCAS Google Scholar
Tortorella, M.D., Liu, R.Q., Burn, T., Newton, R.C. & Arner, E. Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol.21, 499–511 (2002). ArticleCAS Google Scholar
Tortorella, M.D. et al. ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. Arch. Biochem. Biophys.444, 34–44 (2005). ArticleCAS Google Scholar
Wang, P. et al. Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J. Biol. Chem.279, 15434–15440 (2004). ArticleCAS Google Scholar
Longpré, J.M. et al. Characterization of proADAMTS5 processing by proprotein convertases. Int. J. Biochem. Cell Biol.41, 1116–1126 (2009). Article Google Scholar
Tkachenko, E., Rhodes, J.M. & Simons, M. Syndecans: new kids on the signaling block. Circ. Res.96, 488–500 (2005). ArticleCAS Google Scholar
Molténi, A., Modrowski, D., Hott, M. & Marie, P.J. Differential expression of fibroblast growth factor receptor-1, -2, and -3 and syndecan-1, -2, and -4 in neonatal rat mandibular condyle and calvaria during osteogenic differentiation in vitro. Bone24, 337–347 (1999). Article Google Scholar
Cornelison, D.D., Filla, M.S., Stanley, H.M., Rapraeger, A.C. & Olwin, B.B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol.239, 79–94 (2001). ArticleCAS Google Scholar
Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest.107, R9–R14 (2001). ArticleCAS Google Scholar
Lim, S.T., Longley, R.L., Couchman, J.R. & Woods, A. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C α (PKC α) increases focal adhesion localization of PKC α. J. Biol. Chem.278, 13795–13802 (2003). ArticleCAS Google Scholar
Wilcox-Adelman, S.A., Denhez, F. & Goetinck, P.F. Syndecan-4 modulates focal adhesion kinase phosphorylation. J. Biol. Chem.277, 32970–32977 (2002). ArticleCAS Google Scholar
Saoncella, S. et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc. Natl. Acad. Sci. USA96, 2805–2810 (1999). ArticleCAS Google Scholar
Barre, P.E., Redini, F., Boumediene, K., Vielpeau, C. & Pujol, J.P. Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage8, 34–43 (2000). ArticleCAS Google Scholar
Clements, K.M. et al. Gene deletion of either interleukin-1β, interleukin-1β-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum.48, 3452–3463 (2003). ArticleCAS Google Scholar
Glasson, S.S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4–knockout mice. Arthritis Rheum.50, 2547–2558 (2004). ArticleCAS Google Scholar
Kamekura, S. et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage13, 632–641 (2005). ArticleCAS Google Scholar
Blom, A.B. et al. Crucial role of macrophages in matrix metalloproteinase–mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum.56, 147–157 (2007). ArticleCAS Google Scholar
Mankin, H.J., Dorfman, H., Lippiello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am.53, 523–537 (1971). ArticleCAS Google Scholar
Ostergaard, K., Andersen, C.B., Petersen, J., Bendtzen, K. & Salter, D.M. Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann. Rheum. Dis.58, 208–213 (1999). ArticleCAS Google Scholar
Pap, G. et al. Development of osteoarthritis in the knee joints of Wistar rats after strenuous running exercise in a running wheel by intracranial self-stimulation. Pathol. Res. Pract.194, 41–47 (1998). ArticleCAS Google Scholar