Therapeutic cell engineering with surface-conjugated synthetic nanoparticles (original) (raw)
Fiorina, P., Shapiro, A.M., Ricordi, C. & Secchi, A. The clinical impact of islet transplantation. Am. J. Transplant.8, 1990–1997 (2008). ArticleCAS Google Scholar
Alison, M.R., Islam, S. & Lim, S.M. Cell therapy for liver disease. Curr. Opin. Mol. Ther.11, 364–374 (2009). CASPubMed Google Scholar
Alper, J. Geron gets green light for human trial of ES cell–derived product. Nat. Biotechnol.27, 213–214 (2009). ArticleCAS Google Scholar
Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons 321, 1218–1221 (2008).
Morgan, R.A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314, 126–129 (2006). ArticleCAS Google Scholar
Hunder, N.N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med.358, 2698–2703 (2008). ArticleCAS Google Scholar
Mackinnon, S., Thomson, K., Verfuerth, S., Peggs, K. & Lowdell, M. Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells Mol. Dis.40, 63–67 (2008). ArticleCAS Google Scholar
Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med.201, 139–148 (2005). ArticleCAS Google Scholar
Wallace, A. et al. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T cell therapy of established solid cancers. Clin. Cancer Res.14, 3966–3974 (2008). ArticleCAS Google Scholar
Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med.12, 89–98 (2006). ArticleCAS Google Scholar
Berger, C. et al. Safety and immunological effects of IL-15 administration in nonhuman primates. Blood114, 2417–2426 (2009). ArticleCAS Google Scholar
Thompson, J.A. et al. Recombinant interleukin 2 toxicity, pharmacokinetics and immunomodulatory effects in a phase I trial. Cancer Res.47, 4202–4207 (1987). CASPubMed Google Scholar
Treisman, J. et al. Interleukin-2–transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. Blood85, 139–145 (1995). CASPubMed Google Scholar
Sahaf, B., Heydari, K., Herzenberg, L.A. & Herzenberg, L.A. Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. USA100, 4001–4005 (2003). ArticleCAS Google Scholar
Bernstein, I.D., Boyd, R.L. & van den Brink, M.R. Clinical strategies to enhance posttransplant immune reconstitution. Biol. Blood Marrow Transplant.14, 94–99 (2008). Article Google Scholar
Jain, R.K. A new target for tumor therapy. N. Engl. J. Med.360, 2669–2671 (2009). ArticleCAS Google Scholar
Overwijk, W.W. et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of 'self'-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med.188, 277–286 (1998). ArticleCAS Google Scholar
Rubinstein, M.P. et al. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. Proc. Natl. Acad. Sci. USA103, 9166–9171 (2006). ArticleCAS Google Scholar
Lu, J. et al. Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin. Cancer Res.8, 3877–3884 (2002). CASPubMed Google Scholar
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med.15, 808–813 (2009). ArticleCAS Google Scholar
Dinauer, N. et al. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T lymphocytes. Biomaterials26, 5898–5906 (2005). ArticleCAS Google Scholar
Davis, M.E., Chen, Z.G. & Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7, 771–782 (2008). ArticleCAS Google Scholar
Prescher, J.A., Dube, D.H. & Bertozzi, C.R. Chemical remodelling of cell surfaces in living animals. Nature430, 873–877 (2004). ArticleCAS Google Scholar
Reddy, S.T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol.25, 1159–1164 (2007). ArticleCAS Google Scholar
Woodrow, K.A. et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater.8, 526–533 (2009). ArticleCAS Google Scholar
Bin Na, H., Song, I.C. & Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater.21, 2133–2148 (2009). Article Google Scholar
Bartlett, D.W., Su, H., Hildebrandt, I.J., Weber, W.A. & Davis, M.E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA104, 15549–15554 (2007). ArticleCAS Google Scholar
Weissleder, R., Kelly, K., Sun, E.Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol.23, 1418–1423 (2005). ArticleCAS Google Scholar
Dhar, S., Gu, F.X., Langer, R., Farokhzad, O.C. & Lippard, S.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. USA105, 17356–17361 (2008). ArticleCAS Google Scholar
Kirpotin, D.B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res.66, 6732–6740 (2006). ArticleCAS Google Scholar
Reichardt, W. et al. Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation. J. Immunol.181, 4770–4779 (2008). ArticleCAS Google Scholar