Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome (original) (raw)
Badano, J.L., Mitsuma, N., Beales, P.L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet.7, 125–148 (2006). ArticleCAS Google Scholar
Joubert, M., Eisenring, J.J., Robb, J.P. & Andermann, F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia and retardation. Neurology19, 813–825 (1969). ArticleCAS Google Scholar
Louie, C.M. & Gleeson, J.G. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet.14 Suppl. 2, R235–R242 (2005). ArticleCAS Google Scholar
Dixon-Salazar, T. et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet.75, 979–987 (2004). ArticleCAS Google Scholar
Ferland, R.J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet.36, 1008–1013 (2004). ArticleCAS Google Scholar
Valente, E.M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet.38, 623–625 (2006). ArticleCAS Google Scholar
Sayer, J.A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet.38, 674–681 (2006). ArticleCAS Google Scholar
Lancaster, M.A. et al. Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med.15, 1046–1054 (2009). ArticleCAS Google Scholar
Hedgepeth, C.M. et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol.185, 82–91 (1997). ArticleCAS Google Scholar
Chizhikov, V.V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci.27, 9780–9789 (2007). ArticleCAS Google Scholar
Spassky, N. et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev. Biol.317, 246–259 (2008). ArticleCAS Google Scholar
Berbari, N.F., O'Connor, A.K., Haycraft, C.J. & Yoder, B.K. The primary cilium as a complex signaling center. Curr. Biol.19, R526–R535 (2009). ArticleCAS Google Scholar
Lancaster, M.A. & Gleeson, J.G. The primary cilium as a cellular signaling center: lessons from disease. Curr. Opin. Genet. Dev.19, 220–229 (2009). ArticleCAS Google Scholar
Louie, C.M. et al. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet.42, 175–180 (2010). ArticleCAS Google Scholar
Cooper, P.A., Benno, R.H., Hahn, M.E. & Hewitt, J.K. Genetic analysis of cerebellar foliation patterns in mice (Mus musculus). Behav. Genet.21, 405–419 (1991). ArticleCAS Google Scholar
Yachnis, A.T. & Rorke, L.B. Neuropathology of Joubert syndrome. J. Child Neurol.14, 655–659, discussion 669–672 (1999). ArticleCAS Google Scholar
Friede, R.L. & Boltshauser, E. Uncommon syndromes of cerebellar vermis aplasia. I: Joubert syndrome. Dev. Med. Child Neurol.20, 758–763 (1978). ArticleCAS Google Scholar
Corrales, J.D., Rocco, G.L., Blaess, S., Guo, Q. & Joyner, A.L. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development131, 5581–5590 (2004). ArticleCAS Google Scholar
Kenney, A.M., Cole, M.D. & Rowitch, D.H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development130, 15–28 (2003). ArticleCAS Google Scholar
Chang, B. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet.15, 1847–1857 (2006). ArticleCAS Google Scholar
Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol.190, 927–940 (2010). ArticleCAS Google Scholar
ten Donkelaar, H.J., Lammens, M., Wesseling, P., Thijssen, H.O. & Renier, W.O. Development and developmental disorders of the human cerebellum. J. Neurol.250, 1025–1036 (2003). ArticleCAS Google Scholar
Parisi, M.A. et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J. Med. Genet.43, 334–339 (2006). ArticleCAS Google Scholar
Valente, E.M. et al. AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann. Neurol.59, 527–534 (2006). ArticleCAS Google Scholar
Thomas, K.R., Musci, T.S., Neumann, P.E. & Capecchi, M.R. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell67, 969–976 (1991). ArticleCAS Google Scholar
Schüller, U. & Rowitch, D.H. β-catenin function is required for cerebellar morphogenesis. Brain Res.1140, 161–169 (2007). Article Google Scholar
Louvi, A., Alexandre, P., Metin, C., Wurst, W. & Wassef, M. The isthmic neuroepithelium is essential for cerebellar midline fusion. Development130, 5319–5330 (2003). ArticleCAS Google Scholar
Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA100, 3299–3304 (2003). ArticleCAS Google Scholar
Cheng, L.E., Zhang, J. & Reed, R.R. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev. Biol.307, 43–52 (2007). ArticleCAS Google Scholar
Millen, K.J., Wurst, W., Herrup, K. & Joyner, A.L. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development120, 695–706 (1994). CASPubMed Google Scholar
Cohen, E.D. et al. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J. Clin. Invest.119, 2538–2549 (2009). ArticleCAS Google Scholar
Marino, S. Medulloblastoma: developmental mechanisms out of control. Trends Mol. Med.11, 17–22 (2005). ArticleCAS Google Scholar
Hsiao, Y.C. et al. Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum. Mol. Genet.18, 3926–3941 (2009). ArticleCAS Google Scholar
Kim, J., Krishnaswami, S.R. & Gleeson, J.G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet.17, 3796–3805 (2008). ArticleCAS Google Scholar
Grimmer, M.R. & Weiss, W.A. BMPs oppose Math1 in cerebellar development and in medulloblastoma. Genes Dev.22, 693–699 (2008). ArticleCAS Google Scholar
Yaguchi, Y. et al. Fibroblast growth factor (FGF) gene expression in the developing cerebellum suggests multiple roles for FGF signaling during cerebellar morphogenesis and development. Dev. Dyn.238, 2058–2072 (2009). ArticleCAS Google Scholar
Koizumi, H., Tanaka, T. & Gleeson, J.G. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron49, 55–66 (2006). ArticleCAS Google Scholar
Saleem, S.N. & Zaki, M.S. Role of MR imaging in prenatal diagnosis of pregnancies at risk for Joubert syndrome and related cerebellar disorders. AJNR Am. J. Neuroradiol.31, 424–429 (2010). ArticleCAS Google Scholar
Hatten, M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol.100, 384–396 (1985). ArticleCAS Google Scholar
Lee, J.K. et al. Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J. Neurosci.29, 8649–8654 (2009). ArticleCAS Google Scholar