MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity (original) (raw)
Muoio, D.M. & Newgard, C.B. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem.75, 367–401 (2006). ArticleCASPubMed Google Scholar
Lowell, B.B. & Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science307, 384–387 (2005). ArticleCASPubMed Google Scholar
Mehta, J.L., Rasouli, N., Sinha, A.K. & Molavi, B. Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int. J. Biochem. Cell Biol.38, 794–803 (2006). ArticleCASPubMed Google Scholar
Morino, K., Petersen, K.F. & Shulman, G.I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes55 (suppl. 2), S9–S15 (2006). ArticleCASPubMed Google Scholar
Kim, J.Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest.117, 2621–2637 (2007). ArticleCASPubMedPubMed Central Google Scholar
Scherer, P.E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem.270, 26746–26749 (1995). ArticleCASPubMed Google Scholar
Holland, W.L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med.17, 55–63 (2011). ArticleCASPubMed Google Scholar
Kelley, D.E., He, J., Menshikova, E.V. & Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes51, 2944–2950 (2002). ArticleCASPubMed Google Scholar
Ritov, V.B. et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes54, 8–14 (2005). ArticleCASPubMed Google Scholar
Simoneau, J.A., Veerkamp, J.H., Turcotte, L.P. & Kelley, D.E. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J.13, 2051–2060 (1999). ArticleCASPubMed Google Scholar
Colca, J.R. et al. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am. J. Physiol. Endocrinol. Metab.286, E252–E260 (2004). ArticleCASPubMed Google Scholar
Paddock, M.L. et al. MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc. Natl. Acad. Sci. USA104, 14342–14347 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P. & Dixon, J.E. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc. Natl. Acad. Sci. USA104, 5318–5323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wiley, S.E. et al. The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster. J. Biol. Chem.282, 23745–23749 (2007). ArticleCASPubMed Google Scholar
Lin, J., Zhou, T., Ye, K. & Wang, J. Crystal structure of human mitoNEET reveals distinct groups of iron sulfur proteins. Proc. Natl. Acad. Sci. USA104, 14640–14645 (2007). ArticleCASPubMedPubMed Central Google Scholar
Graves, R.A., Tontonoz, P., Platt, K.A., Ross, S.R. & Spiegelman, B.M. Identification of a fat cell enhancer: analysis of requirements for adipose tissue-specific gene expression. J. Cell. Biochem.49, 219–224 (1992). ArticleCASPubMed Google Scholar
Chavez, J.A. & Summers, S.A. A ceramide-centric view of insulin resistance. Cell Metab.15, 585–594 (2012). ArticleCASPubMed Google Scholar
Jornayvaz, F.R. & Shulman, G.I. Diacylglycerol activation of protein kinase cepsilon and hepatic insulin resistance. Cell Metab.15, 574–584 (2012). ArticleCASPubMedPubMed Central Google Scholar
Milne, G.L., Sanchez, S.C., Musiek, E.S. & Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc.2, 221–226 (2007). ArticleCASPubMed Google Scholar
Langin, D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res.53, 482–491 (2006). ArticleCASPubMed Google Scholar
Asterholm, I.W. & Scherer, P.E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol.176, 1364–1376 (2010). ArticleCASPubMedPubMed Central Google Scholar
Franckhauser, S. et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes51, 624–630 (2002). ArticleCASPubMed Google Scholar
Zuris, J.A. et al. Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein. Proc. Natl. Acad. Sci. USA108, 13047–13052 (2011). ArticleCASPubMedPubMed Central Google Scholar
Macdonald, V.W., Charache, S. & Hathaway, P.J. Iron deficiency anemia: mitochondrial α-glycerophosphate dehydrogenase in guinea pig skeletal muscle. J. Lab. Clin. Med.105, 11–18 (1985). CASPubMed Google Scholar
Crooks, D.R., Ghosh, M.C., Haller, R.G., Tong, W.H. & Rouault, T.A. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood115, 860–869 (2010). ArticleCASPubMedPubMed Central Google Scholar
Huang, J. et al. Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes60, 80–87 (2011). ArticleCASPubMed Google Scholar
Mitchell, P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science206, 1148–1159 (1979). ArticleCASPubMed Google Scholar
Rogers, G.W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE6, e21746 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rigoulet, M., Yoboue, E.D. & Devin, A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid. Redox Signal.14, 459–468 (2011). ArticleCASPubMed Google Scholar
Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol.292, C125–C136 (2007). ArticleCASPubMed Google Scholar
Houstis, N., Rosen, E.D. & Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature440, 944–948 (2006). ArticleCASPubMed Google Scholar
Tarnopolsky, M.A. et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol.292, R1271–R1278 (2007). ArticleCASPubMed Google Scholar
Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B.M. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1–related transcription coactivator associated with host cell factor. J. Biol. Chem.277, 1645–1648 (2002). ArticleCASPubMed Google Scholar
Bonnard, C. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest.118, 789–800 (2008). CASPubMedPubMed Central Google Scholar
Curtis, J.M. et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes59, 1132–1142 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karelis, A.D. et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J. Clin. Endocrinol. Metab.90, 4145–4150 (2005). ArticleCASPubMed Google Scholar
McGarry, J.D. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes51, 7–18 (2002). ArticleCASPubMed Google Scholar
Koh, E.H. et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes56, 2973–2981 (2007). ArticleCASPubMed Google Scholar
Frizzell, N. et al. Succination of thiol groups in adipose tissue proteins in diabetes: succination inhibits polymerization and secretion of adiponectin. J. Biol. Chem.284, 25772–25781 (2009). ArticleCASPubMedPubMed Central Google Scholar
Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature464, 1313–1319 (2010). ArticleCASPubMed Google Scholar
Sherratt, H.S. Mitochondria: structure and function. Rev. Neurol. (Paris)147, 417–430 (1991). CAS Google Scholar
Dey, R. & Moraes, C.T. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J. Biol. Chem.275, 7087–7094 (2000). ArticleCASPubMed Google Scholar
Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest.114, 1752–1761 (2004). ArticleCASPubMedPubMed Central Google Scholar
Anderson, E.J., Yamazaki, H. & Neufer, P.D. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid–supported respiration. J. Biol. Chem.282, 31257–31266 (2007). ArticleCASPubMed Google Scholar
Anderson, E.J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest.119, 573–581 (2009). ArticleCASPubMedPubMed Central Google Scholar
Korshunov, S.S., Skulachev, V.P. & Starkov, A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett.416, 15–18 (1997). ArticleCASPubMed Google Scholar
Yu, T., Robotham, J.L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA103, 2653–2658 (2006). ArticleCASPubMedPubMed Central Google Scholar
Finck, B.N. et al. A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes. Cell Metab.1, 133–144 (2005). ArticleCASPubMed Google Scholar
Nawrocki, A.R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem.281, 2654–2660 (2006). ArticleCASPubMed Google Scholar
Berglund, E.D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest.122, 1000–1009 (2012). ArticleCASPubMedPubMed Central Google Scholar
Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) method. Methods25, 402–408 (2001). ArticleCASPubMed Google Scholar
Scherer, P.E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem.270, 26746–26749 (1995). ArticleCASPubMed Google Scholar
Combs, T.P. et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology145, 367–383 (2004). ArticleCASPubMed Google Scholar
Laplante, M. et al. Tissue-specific postprandial clearance is the major determinant of PPARγ-induced triglyceride lowering in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol.296, R57–R66 (2009). ArticleCASPubMed Google Scholar
Hultin, M., Carneheim, C., Rosenqvist, K. & Olivecrona, T. Intravenous lipid emulsions: removal mechanisms as compared to chylomicrons. J. Lipid Res.36, 2174–2184 (1995). CASPubMed Google Scholar
Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959). ArticleCASPubMed Google Scholar