Markert, J.M. et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther.17, 199–207 (2009). ArticleCASPubMed Google Scholar
Chiocca, E.A. The host response to cancer virotherapy. Curr. Opin. Mol. Ther.10, 38–45 (2008). PubMed Google Scholar
Fulci, G. et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res.67, 9398–9406 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat. Med.5, 881–887 (1999). ArticleCASPubMed Google Scholar
Fulci, G. et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl. Acad. Sci. USA103, 12873–12878 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kurozumi, K. et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J. Natl. Cancer Inst.99, 1768–1781 (2007). ArticleCASPubMed Google Scholar
Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A. & Wang, J. Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res.66, 2314–2319 (2006). ArticleCASPubMed Google Scholar
Wakimoto, H., Fulci, G., Tyminski, E. & Chiocca, E.A. Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide's enhancement of viral oncolysis. Gene Ther.11, 214–223 (2004). ArticleCASPubMedPubMed Central Google Scholar
Altomonte, J. et al. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther.16, 266–278 (2009). ArticleCASPubMed Google Scholar
Todo, T., Martuza, R.L., Rabkin, S.D. & Johnson, P.A. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl. Acad. Sci. USA98, 6396–6401 (2001). ArticleCASPubMedPubMed Central Google Scholar
Varghese, S., Rabkin, S.D., Nielsen, P.G., Wang, W. & Martuza, R.L. Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. Clin. Cancer Res.12, 2919–2927 (2006). ArticleCASPubMed Google Scholar
Farrell, C.J. et al. Combination immunotherapy for tumors via sequential intratumoral injections of oncolytic herpes simplex virus 1 and immature dendritic cells. Clin. Cancer Res.14, 7711–7716 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hellums, E.K. et al. Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro-oncol.7, 213–224 (2005). ArticleCASPubMedPubMed Central Google Scholar
Prestwich, R.J. et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum. Gene Ther.20, 1119–1132 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stanford, M.M., Breitbach, C.J., Bell, J.C. & McFadden, G. Innate immunity, tumor microenvironment and oncolytic virus therapy: friends or foes? Curr. Opin. Mol. Ther.10, 32–37 (2008). CASPubMed Google Scholar
Errington, F. et al. Reovirus activates human dendritic cells to promote innate antitumor immunity. J. Immunol.180, 6018–6026 (2008). ArticleCASPubMed Google Scholar
Prestwich, R.J. et al. Reciprocal human dendritic cell–natural killer cell interactions induce antitumor activity following tumor cell infection by oncolytic reovirus. J. Immunol.183, 4312–4321 (2009). ArticleCASPubMed Google Scholar
Kottke, T. et al. Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer. Mol. Ther.16, 1910–1918 (2008). ArticleCASPubMed Google Scholar
Kottke, T. et al. Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated treg modulation and interleukin-2. Clin. Cancer Res.15, 561–569 (2009). ArticleCASPubMedPubMed Central Google Scholar
Derubertis, B.G. et al. Cytokine-secreting herpes viral mutants effectively treat tumor in a murine metastatic colorectal liver model by oncolytic and T-cell–dependent mechanisms. Cancer Gene Ther.14, 590–597 (2007). ArticleCASPubMed Google Scholar
Chisholm, S.E., Howard, K., Gómez, M.V. & Reyburn, H.T. Expression of ICP0 is sufficient to trigger natural killer cell recognition of herpes simplex virus-infected cells by natural cytotoxicity receptors. J. Infect. Dis.195, 1160–1168 (2007). ArticleCASPubMed Google Scholar
Kambara, H., Okano, H., Chiocca, E.A. & Saeki, Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res.65, 2832–2839 (2005). ArticleCASPubMed Google Scholar
Aghi, M., Visted, T., Depinho, R.A. & Chiocca, E.A. Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene27, 4249–4254 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hayakawa, Y. & Smyth, M.J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol.176, 1517–1524 (2006). ArticleCASPubMed Google Scholar
Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259, 1739–1742 (1993). ArticleCASPubMed Google Scholar
Yoshino, H. et al. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scid mice. Bone Marrow Transplant.26, 1211–1216 (2000). ArticleCASPubMed Google Scholar
Randolph, G.J., Jakubzick, C. & Qu, C. Antigen presentation by monocytes and monocyte-derived cells. Curr. Opin. Immunol.20, 52–60 (2008). ArticleCASPubMed Google Scholar
Savarin, C. & Bergmann, C.C. Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr. Opin. Pharmacol.8, 472–479 (2008). ArticleCASPubMedPubMed Central Google Scholar
Weiner, N.E. et al. A syngeneic mouse glioma model for study of glioblastoma therapy. J. Neuropathol. Exp. Neurol.58, 54–60 (1999). ArticleCASPubMed Google Scholar
Taylor, M.A., Ward, B., Schatzle, J.D. & Bennett, M. Perforin- and Fas-dependent mechanisms of natural killer cell–mediated rejection of incompatible bone marrow cell grafts. Eur. J. Immunol.32, 793–799 (2002). ArticleCASPubMed Google Scholar
Trotta, R. et al. Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases. J. Immunol.161, 6648–6656 (1998). CASPubMed Google Scholar
Castriconi, R. et al. NK cells recognize and kill human glioblastoma cells with stem cell–like properties. J. Immunol.182, 3530–3539 (2009). ArticleCASPubMed Google Scholar
Wu, A. et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J. Neurooncol.83, 121–131 (2007). ArticleCASPubMed Google Scholar
Brandt, C.S. et al. The B7 family member B7–H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med.206, 1495–1503 (2009). ArticleCASPubMedPubMed Central Google Scholar
Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol.6, 399–409 (2006). ArticlePubMed Google Scholar
Altomonte, J. et al. Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. Mol. Ther.16, 146–153 (2008). ArticleCASPubMed Google Scholar
Galivo, F. et al. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum. Gene Ther.21, 439–450 (2010). ArticleCASPubMedPubMed Central Google Scholar
Galivo, F. et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther.17, 158–170 (2010). ArticleCASPubMed Google Scholar
Marques, C.P., Hu, S., Sheng, W. & Lokensgard, J.R. Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res.121, 1–10 (2006). ArticleCASPubMed Google Scholar
Yu, J. et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK cell subsets. Blood115, 274–281 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lundberg, P. et al. A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J. Virol.77, 11661–11673 (2003). ArticleCASPubMedPubMed Central Google Scholar
Arnon, T.I., Markel, G. & Mandelboim, O. Tumor and viral recognition by natural killer cells receptors. Semin. Cancer Biol.16, 348–358 (2006). ArticleCASPubMed Google Scholar
Bloushtain, N. et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J. Immunol.173, 2392–2401 (2004). ArticleCASPubMed Google Scholar
Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med.195, 343–351 (2002). ArticleCASPubMedPubMed Central Google Scholar
Arnon, T.I. et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat. Immunol.6, 515–523 (2005). ArticleCASPubMed Google Scholar
Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol.5, 112–124 (2005). ArticleCASPubMed Google Scholar
Pogge von Strandmann, E. et al. Human leukocyte antigen-B–associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity27, 965–974 (2007). ArticleCASPubMed Google Scholar
Sivori, S. et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur. J. Immunol.29, 1656–1666 (1999). ArticleCASPubMed Google Scholar
Giannini, C. et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-oncol.7, 164–176 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reilly, K.M., Loisel, D.A., Bronson, R.T., McLaughlin, M.E. & Jacks, T. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat. Genet.26, 109–113 (2000). ArticleCASPubMed Google Scholar
Shultz, L.D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγ null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol.174, 6477–6489 (2005). ArticleCASPubMed Google Scholar
Yu, J. et al. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J. Clin. Invest.121, 1456–1470 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ghiasi, H., Cai, S., Perng, G.C., Nesburn, A.B. & Wechsler, S.L. The role of natural killer cells in protection of mice against death and corneal scarring following ocular HSV-1 infection. Antiviral Res.45, 33–45 (2000). ArticleCASPubMed Google Scholar
Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol.7, 517–523 (2006). ArticleCASPubMed Google Scholar
Marques, C.P. et al. Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J. Immunol.181, 6417–6426 (2008). ArticleCASPubMed Google Scholar
Vitale, M. et al. NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor. Blood106, 566–571 (2005). ArticleCASPubMed Google Scholar
Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA104, 3384–3389 (2007). ArticleCASPubMedPubMed Central Google Scholar