Origin and function of myofibroblasts in kidney fibrosis (original) (raw)

References

  1. Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500–503 (2003).
    Article CAS Google Scholar
  2. Sugimoto, H., Mundel, T.M., Kieran, M.W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).
    Article CAS Google Scholar
  3. Meran, S. & Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 92, 158–167 (2011).
    Article CAS Google Scholar
  4. Humphreys, B.D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).
    Article CAS Google Scholar
  5. Lin, S.L., Kisseleva, T., Brenner, D.A. & Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).
    Article CAS Google Scholar
  6. Rønnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. & Bissell, M.J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859–873 (1995).
    Article Google Scholar
  7. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).
    Article CAS Google Scholar
  8. Hall, A.P. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol. Pathol. 34, 763–775 (2006).
    Article CAS Google Scholar
  9. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).
    Article CAS Google Scholar
  10. Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).
    Article CAS Google Scholar
  11. Zeisberg, M. & Kalluri, R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front. Biosci. 13, 6991–6998 (2008).
    Article CAS Google Scholar
  12. Zeisberg, M. & Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. 82, 175–181 (2004).
    Article Google Scholar
  13. Li, J., Qu, X. & Bertram, J.F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol. 175, 1380–1388 (2009).
    Article CAS Google Scholar
  14. Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).
    Article Google Scholar
  15. Broekema, M. et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol. 18, 165–175 (2007).
    Article CAS Google Scholar
  16. Li, J., Deane, J.A., Campanale, N.V., Bertram, J.F. & Ricardo, S.D. The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells 25, 697–706 (2007).
    Article CAS Google Scholar
  17. LeBleu, V.S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 19, 227–231 (2013).
    Article CAS Google Scholar
  18. LeBleu, V. et al. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol. 20, 2359–2370 (2009).
    Article CAS Google Scholar
  19. LeBleu, V.S., Sugimoto, H., Miller, C.A., Gattone, V.H. II & Kalluri, R. Lymphocytes are dispensable for glomerulonephritis but required for renal interstitial fibrosis in matrix defect induced Alport renal disease. Lab. Invest. 88, 284–292 (2008).
    Article CAS Google Scholar
  20. Leask, A. & Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).
    Article CAS Google Scholar
  21. Chytil, A., Magnuson, M.A., Wright, C.V. & Moses, H.L. Conditional inactivation of the TGF-β type II receptor using Cre:Lox. Genesis 32, 73–75 (2002).
    Article CAS Google Scholar
  22. Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn. 222, 218–227 (2001).
    Article CAS Google Scholar
  23. Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol. 7, 452–464 (2005).
    Article CAS Google Scholar
  24. Cooke, V.G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81 (2012).
    Article CAS Google Scholar
  25. Díaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24, 909–969 (2009).
    PubMed Google Scholar
  26. Hirschi, K.K. & D'Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).
    Article CAS Google Scholar
  27. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B–deficient mice. Science 277, 242–245 (1997).
    Article CAS Google Scholar
  28. Song, S., Ewald, A.J., Stallcup, W., Werb, Z. & Bergers, G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 7, 870–879 (2005).
    Article CAS Google Scholar
  29. Foo, S.S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel–wall assembly. Cell 124, 161–173 (2006).
    Article CAS Google Scholar
  30. Abraham, S., Kogata, N., Fassler, R. & Adams, R.H. Integrin β1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ. Res. 102, 562–570 (2008).
    Article CAS Google Scholar
  31. Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).
    Article CAS Google Scholar
  32. Liu, Y. New insights into epithelial-mesenchyal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).
    Article CAS Google Scholar
  33. Sugimoto, H. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 18, 396–404 (2012).
    Article CAS Google Scholar
  34. Collett, G.D. & Canfield, A.E. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res. 96, 930–938 (2005).
    Article CAS Google Scholar
  35. Hashimoto, N. et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 43, 161–172 (2010).
    Article CAS Google Scholar
  36. Zeisberg, E.M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).
    Article CAS Google Scholar
  37. Rock, J.R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA 108, E1475–E1483 (2011).
    Article CAS Google Scholar
  38. Zeisberg, M. et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).
    Article CAS Google Scholar
  39. Tondreau, T. et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy 6, 372–379 (2004).
    Article CAS Google Scholar

Download references