Origin and function of myofibroblasts in kidney fibrosis (original) (raw)
References
Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol.200, 500–503 (2003). ArticleCAS Google Scholar
Sugimoto, H., Mundel, T.M., Kieran, M.W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther.5, 1640–1646 (2006). ArticleCAS Google Scholar
Meran, S. & Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol.92, 158–167 (2011). ArticleCAS Google Scholar
Humphreys, B.D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol.176, 85–97 (2010). ArticleCAS Google Scholar
Lin, S.L., Kisseleva, T., Brenner, D.A. & Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol.173, 1617–1627 (2008). ArticleCAS Google Scholar
Rønnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. & Bissell, M.J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest.95, 859–873 (1995). Article Google Scholar
Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell21, 193–215 (2011). ArticleCAS Google Scholar
Hall, A.P. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol. Pathol.34, 763–775 (2006). ArticleCAS Google Scholar
Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest.110, 341–350 (2002). ArticleCAS Google Scholar
Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest.112, 1776–1784 (2003). ArticleCAS Google Scholar
Zeisberg, M. & Kalluri, R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front. Biosci.13, 6991–6998 (2008). ArticleCAS Google Scholar
Zeisberg, M. & Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med.82, 175–181 (2004). Article Google Scholar
Li, J., Qu, X. & Bertram, J.F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol.175, 1380–1388 (2009). ArticleCAS Google Scholar
Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol.19, 2282–2287 (2008). Article Google Scholar
Broekema, M. et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol.18, 165–175 (2007). ArticleCAS Google Scholar
Li, J., Deane, J.A., Campanale, N.V., Bertram, J.F. & Ricardo, S.D. The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells25, 697–706 (2007). ArticleCAS Google Scholar
LeBleu, V.S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med.19, 227–231 (2013). ArticleCAS Google Scholar
LeBleu, V. et al. Stem cell therapies benefit Alport syndrome. J. Am. Soc. Nephrol.20, 2359–2370 (2009). ArticleCAS Google Scholar
LeBleu, V.S., Sugimoto, H., Miller, C.A., Gattone, V.H. II & Kalluri, R. Lymphocytes are dispensable for glomerulonephritis but required for renal interstitial fibrosis in matrix defect induced Alport renal disease. Lab. Invest.88, 284–292 (2008). ArticleCAS Google Scholar
Leask, A. & Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J.18, 816–827 (2004). ArticleCAS Google Scholar
Chytil, A., Magnuson, M.A., Wright, C.V. & Moses, H.L. Conditional inactivation of the TGF-β type II receptor using Cre:Lox. Genesis32, 73–75 (2002). ArticleCAS Google Scholar
Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn.222, 218–227 (2001). ArticleCAS Google Scholar
Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol.7, 452–464 (2005). ArticleCAS Google Scholar
Cooke, V.G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell21, 66–81 (2012). ArticleCAS Google Scholar
Díaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol.24, 909–969 (2009). PubMed Google Scholar
Hirschi, K.K. & D'Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res.32, 687–698 (1996). ArticleCAS Google Scholar
Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B–deficient mice. Science277, 242–245 (1997). ArticleCAS Google Scholar
Song, S., Ewald, A.J., Stallcup, W., Werb, Z. & Bergers, G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol.7, 870–879 (2005). ArticleCAS Google Scholar
Foo, S.S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel–wall assembly. Cell124, 161–173 (2006). ArticleCAS Google Scholar
Abraham, S., Kogata, N., Fassler, R. & Adams, R.H. Integrin β1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ. Res.102, 562–570 (2008). ArticleCAS Google Scholar
Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest.121, 468–474 (2011). ArticleCAS Google Scholar
Liu, Y. New insights into epithelial-mesenchyal transition in kidney fibrosis. J. Am. Soc. Nephrol.21, 212–222 (2010). ArticleCAS Google Scholar
Sugimoto, H. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med.18, 396–404 (2012). ArticleCAS Google Scholar
Collett, G.D. & Canfield, A.E. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res.96, 930–938 (2005). ArticleCAS Google Scholar
Hashimoto, N. et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol.43, 161–172 (2010). ArticleCAS Google Scholar
Zeisberg, E.M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med.13, 952–961 (2007). ArticleCAS Google Scholar
Rock, J.R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA108, E1475–E1483 (2011). ArticleCAS Google Scholar
Zeisberg, M. et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med.9, 964–968 (2003). ArticleCAS Google Scholar
Tondreau, T. et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy6, 372–379 (2004). ArticleCAS Google Scholar