Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell3, 484–492 (2008). ArticleCASPubMed Google Scholar
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25, 977–988 (2006). ArticleCASPubMed Google Scholar
Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466, 829–834 (2010). PubMedPubMed Central Google Scholar
Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol.12, 391–398 (2011). ArticleCASPubMed Google Scholar
Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3, 687–694 (2002). ArticleCASPubMed Google Scholar
Priestley, G.V., Ulyanova, T. & Papayannopoulou, T. Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+α4f/f mice are hematopoietic cell autonomous. Blood109, 109–111 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Identification of CXCR4 as a new nitric oxide-regulated gene in human CD34+ cells. Stem Cells25, 211–219 (2007). ArticleCASPubMed Google Scholar
Colognato, R. et al. Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood102, 2645–2652 (2003). ArticleCASPubMed Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). ArticleCASPubMed Google Scholar
Ho, I.A. et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells27, 1366–1375 (2009). ArticleCASPubMedPubMed Central Google Scholar
Riewald, M. & Ruf, W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J. Biol. Chem.280, 19808–19814 (2005). ArticleCASPubMed Google Scholar
Aronovich, A. et al. A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood122, 2562–2571 (2013). ArticleCASPubMedPubMed Central Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109, 625–637 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tjwa, M. et al. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J. Clin. Invest.119, 1008–1018 (2009). CASPubMedPubMed Central Google Scholar
Tudpor, K. et al. Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Bone72, 14–22 (2015). ArticleCASPubMed Google Scholar
Balazs, A.B., Fabian, A.J., Esmon, C.T. & Mulligan, R.C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood107, 2317–2321 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kent, D.G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood113, 6342–6350 (2009). ArticleCASPubMed Google Scholar
Iwasaki, H., Arai, F., Kubota, Y., Dahl, M. & Suda, T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood116, 544–553 (2010). ArticleCASPubMed Google Scholar
Wilson, N.K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell16, 712–724 (2015). ArticleCASPubMedPubMed Central Google Scholar
Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science296, 1880–1882 (2002). ArticleCASPubMed Google Scholar
Geiger, H. et al. Pharmacological targeting of the thrombomodulin-activated protein C pathway mitigates radiation toxicity. Nat. Med.18, 1123–1129 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hein, L., Ishii, K., Coughlin, S.R. & Kobilka, B.K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem.269, 27719–27726 (1994). CASPubMed Google Scholar
Steidl, U. et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood99, 2037–2044 (2002). ArticleCASPubMed Google Scholar
Wautier, F., Wislet-Gendebien, S., Chanas, G., Rogister, B. & Leprince, P. Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells. BMC Neurosci.8, 104 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dar, A. et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia25, 1286–1296 (2011). ArticleCASPubMedPubMed Central Google Scholar
Broxmeyer, H.E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med.201, 1307–1318 (2005). ArticleCASPubMedPubMed Central Google Scholar
Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature452, 442–447 (2008). ArticleCASPubMed Google Scholar
Gu, J.M., Katsuura, Y., Ferrell, G.L., Grammas, P. & Esmon, C.T. Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood95, 1687–1693 (2000). ArticleCASPubMed Google Scholar
Qu, D., Wang, Y., Esmon, N.L. & Esmon, C.T. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-α–converting enzyme/ADAM17. J. Thromb. Haemost.5, 395–402 (2007). ArticleCASPubMed Google Scholar
Sagi, I., Wong, E. & Afik, R. Variants of TACE pro-domain as TNF-A inhibitor and their medical use. US patent 20150132281 A1 (2015).
Stearns-Kurosawa, D.J., Kurosawa, S., Mollica, J.S., Ferrell, G.L. & Esmon, C.T. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc. Natl. Acad. Sci. USA93, 10212–10216 (1996). ArticleCASPubMedPubMed Central Google Scholar
Disse, J. et al. The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J. Biol. Chem.286, 5756–5767 (2011). ArticleCASPubMed Google Scholar
Gu, J.M. et al. Disruption of the endothelial cell protein C receptor gene in mice causes placental thrombosis and early embryonic lethality. J. Biol. Chem.277, 43335–43343 (2002). ArticleCASPubMed Google Scholar
Castellino, F.J. et al. Mice with a severe deficiency of the endothelial protein C receptor gene develop, survive, and reproduce normally, and do not present with enhanced arterial thrombosis after challenge. Thromb. Haemost.88, 462–472 (2002). ArticleCASPubMed Google Scholar
Weiler-Guettler, H. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Invest.101, 1983–1991 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wang, L., Yang, L., Filippi, M.D., Williams, D.A. & Zheng, Y. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment. Blood107, 98–105 (2006). ArticleCASPubMedPubMed Central Google Scholar
Geiger, H., Koehler, A. & Gunzer, M. Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell-cell interactions and hematopoietic stem cell aging. Cell Cycle6, 884–887 (2007). ArticleCASPubMed Google Scholar
Papayannopoulou, T., Priestley, G.V. & Nakamoto, B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood91, 2231–2239 (1998). ArticleCASPubMed Google Scholar
Taniguchi Ishikawa, E. et al. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking. Nat. Commun.4, 1660 (2013). ArticleCASPubMed Google Scholar
Williams, D.A., Zheng, Y. & Cancelas, J.A. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol.439, 365–393 (2008). ArticleCASPubMed Google Scholar
Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9, 1370–1376 (2003). ArticleCASPubMed Google Scholar
Kolluru, G.K., Siamwala, J.H. & Chatterjee, S. eNOS phosphorylation in health and disease. Biochimie92, 1186–1198 (2010). ArticleCASPubMed Google Scholar
Wang, D. et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature517, 81–84 (2015). ArticleCASPubMed Google Scholar
Pepler, L., Yu, P., Dwivedi, D.J., Trigatti, B.L. & Liaw, P.C. Characterization of mice harboring a variant of EPCR with impaired ability to bind protein C: novel role of EPCR in hematopoiesis. Blood126, 673–682 (2015). ArticleCASPubMed Google Scholar
Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature502, 232–236 (2013). ArticleCASPubMed Google Scholar
Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med.20, 1321–1326 (2014). ArticleCASPubMed Google Scholar
Slungaard, A. et al. Platelet factor 4 enhances generation of activated protein C in vitro and in vivo. Blood102, 146–151 (2003). ArticleCASPubMed Google Scholar
Ludin, A. et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol.13, 1072–1082 (2012). ArticleCASPubMed Google Scholar
Yang, L. et al. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc. Natl. Acad. Sci. USA104, 5091–5096 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yang, F.C. et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc. Natl. Acad. Sci. USA98, 5614–5618 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood118, 4102–4110 (2011). ArticleCASPubMed Google Scholar
Damiano, B.P. et al. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J. Pharmacol. Exp. Ther.288, 671–678 (1999). CASPubMed Google Scholar
Darrow, A.L. et al. Biological consequences of thrombin receptor deficiency in mice. Thromb. Haemost.76, 860–866 (1996). ArticleCASPubMed Google Scholar
Xu, J., Ji, Y., Zhang, X., Drake, M. & Esmon, C.T. Endogenous activated protein C signaling is critical to protection of mice from lipopolysaccaride-induced septic shock. J. Thromb. Haemost.7, 851–856 (2009). ArticleCASPubMed Google Scholar
Dickinson, C.D. & Ruf, W. Active site modification of factor VIIa affects interactions of the protease domain with tissue factor. J. Biol. Chem.272, 19875–19879 (1997). ArticleCASPubMed Google Scholar