Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease (original) (raw)
Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol.6, 173–182 (2006). CASPubMed Google Scholar
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol.13, 159–175 (2013). CASPubMed Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science303, 1532–1535 (2004). CASPubMed Google Scholar
Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med.3, 73ra20 (2011). PubMedPubMed Central Google Scholar
Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol.187, 538–552 (2011). CASPubMedPubMed Central Google Scholar
Kahlenberg, J.M., Carmona-Rivera, C., Smith, C.K. & Kaplan, M.J. Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol.190, 1217–1226 (2013). CASPubMed Google Scholar
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med.3, 73ra19 (2011). PubMedPubMed Central Google Scholar
Denny, M.F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol.184, 3284–3297 (2010). CASPubMedPubMed Central Google Scholar
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med.5, 178ra40 (2013). PubMedPubMed Central Google Scholar
Knight, J.S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest.123, 2981–2993 (2013). CASPubMedPubMed Central Google Scholar
Knight, J.S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res.114, 947–956 (2014). CASPubMedPubMed Central Google Scholar
Smith, C.K. et al. Neutrophil extracellular trap–derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol.66, 2532–2544 (2014). CASPubMedPubMed Central Google Scholar
Knight, J.S., Carmona-Rivera, C. & Kaplan, M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol.3, 380 (2012). PubMedPubMed Central Google Scholar
Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol.198, 773–783 (2012). CASPubMedPubMed Central Google Scholar
Barrientos, L. et al. An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Front. Immunol.4, 166 (2013). PubMedPubMed Central Google Scholar
Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol.184, 205–213 (2009). CASPubMedPubMed Central Google Scholar
Holland, P.C. & Sherratt, H.S. Biochemical effects of the hypoglycemic compound diphenyleneiodonnium. Catalysis of anion–hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem. J.129, 39–54 (1972). CASPubMedPubMed Central Google Scholar
White, M.J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell159, 1549–1562 (2014). CASPubMedPubMed Central Google Scholar
Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature485, 251–255 (2012). CASPubMedPubMed Central Google Scholar
Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity36, 401–414 (2012). CASPubMedPubMed Central Google Scholar
Altenhöfer, S., Radermacher, K.A., Kleikers, P.W., Wingler, K. & Schmidt, H.H. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid. Redox Signal.23, 406–427 (2015). PubMedPubMed Central Google Scholar
Doughan, A.K., Harrison, D.G. & Dikalov, S.I. Molecular mechanisms of angiotensin II–mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res.102, 488–496 (2008). CASPubMed Google Scholar
Mehta, P.K. & Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol.292, C82–C97 (2007). CASPubMed Google Scholar
Nakajima, A., Kurihara, H., Yagita, H., Okumura, K. & Nakano, H. Mitochondrial extrusion through the cytoplasmic vacuoles during cell death. J. Biol. Chem.283, 24128–24135 (2008). CASPubMedPubMed Central Google Scholar
Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity39, 482–495 (2013). CASPubMed Google Scholar
Pazmandi, K. et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic. Biol. Med.77, 281–290 (2014). CASPubMed Google Scholar
Ries, M. et al. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J. Leukoc. Biol.94, 123–135 (2013). CASPubMed Google Scholar
Li, X. et al. Cyclic GMP–AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity39, 1019–1031 (2013). CASPubMed Google Scholar
Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res.21, 290–304 (2011). CASPubMed Google Scholar
Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal.21, 2231–2245 (2014). CASPubMedPubMed Central Google Scholar
Gergely, P. Jr. et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum.46, 175–190 (2002). CASPubMedPubMed Central Google Scholar
Campbell, A.M., Kashgarian, M. & Shlomchik, M.J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med.4, 157ra141 (2012). PubMedPubMed Central Google Scholar
Bianchi, M. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood114, 2619–2622 (2009). CASPubMedPubMed Central Google Scholar
Hultqvist, M., Olsson, L.M., Gelderman, K.A. & Holmdahl, R. The protective role of ROS in autoimmune disease. Trends Immunol.30, 201–208 (2009). CASPubMed Google Scholar
Yu, E.P. & Bennett, M.R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol. Metab.25, 481–487 (2014). CASPubMed Google Scholar
Go, Y.M. et al. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radic. Biol. Med.48, 275–283 (2010). CASPubMed Google Scholar
Jacob, C.O. et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc. Natl. Acad. Sci. USA109, E59–E67 (2012). CASPubMed Google Scholar
Vyshkina, T. et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol.129, 31–35 (2008). CASPubMedPubMed Central Google Scholar
Fuchs, T.A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol.176, 231–241 (2007). CASPubMedPubMed Central Google Scholar
Fazzi, F. et al. TNFR1/phox interaction and TNFR1 mitochondrial translocation thwart silica-induced pulmonary fibrosis. J. Immunol.192, 3837–3846 (2014). CASPubMedPubMed Central Google Scholar
West, A.P. et al. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS. Nature472, 476–480 (2011). CASPubMedPubMed Central Google Scholar
Sibley, C.T. et al. Assessment of atherosclerosis in chronic granulomatous disease. Circulation130, 2031–2039 (2014). CASPubMedPubMed Central Google Scholar
Lekstrom-Himes, J.A., Kuhns, D.B., Alvord, W.G. & Gallin, J.I. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J. Immunol.174, 411–417 (2005). CASPubMed Google Scholar
Kraaij, M.D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. USA107, 17686–17691 (2010). CASPubMed Google Scholar
Lee, K., Won, H.Y., Bae, M.A., Hong, J.H. & Hwang, E.S. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and TH/Treg cells. Proc. Natl. Acad. Sci. USA108, 9548–9553 (2011). CASPubMed Google Scholar
Fernandez-Boyanapalli, R. et al. Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-γ in a nitric oxide–dependent manner. J. Immunol.185, 4030–4041 (2010). CASPubMedPubMed Central Google Scholar
Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood116, 1570–1573 (2010). CASPubMedPubMed Central Google Scholar
Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med.20, 511–517 (2014). CASPubMed Google Scholar
Gane, E.J. et al. The mitochondria-targeted antioxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int.30, 1019–1026 (2010). CASPubMed Google Scholar
Buyse, G.M. et al. Idebenone as a novel, therapeutic approach for Duchenne muscular dystrophy: results from a 12-month, double-blind, randomized placebo-controlled trial. Neuromuscul. Disord.21, 396–405 (2011). PubMed Google Scholar
Tan, E.M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum.25, 1271–1277 (1982). CASPubMed Google Scholar
Kuhns, D.B. et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N. Engl. J. Med.363, 2600–2610 (2010). CASPubMedPubMed Central Google Scholar
Olferiev, M., Lliguicota, M., Kirou, K.A. & Crow, M.K. Methods Mol. Biol.1134, 131–150 (2014). CASPubMed Google Scholar
Ahmad, S., Ghosh, A., Nair, D.L. & Seshadri, M. Simultaneous extraction of nuclear and mitochondrial DNA from human blood. Genes Genet. Syst.82, 429–432 (2007). CASPubMed Google Scholar
Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type-I interferon–dependent innate immunity. Nature461, 788–792 (2009). CASPubMedPubMed Central Google Scholar
Boxio, R., Bossenmeyer-Pourié, C., Steinckwich, N., Dournon, C. & Nüsse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol.75, 604–611 (2004). CASPubMed Google Scholar
Carmona-Rivera, C., Simeonov, D.R., Cardillo, N.D., Gahl, W.A. & Cadilla, C.L. A divalent interaction between HPS1 and HPS4 is required for the formation of the biogenesis of lysosome-related organelle complex–3 (BLOC-3). Biochim. Biophys. Acta1833, 468–478 (2013). CASPubMed Google Scholar