Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells (original) (raw)
References
Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A., Tumor Cell interactions with the extra Cellular matrix during invasion and metastasis. Annu. Rev. Cell Biol.9, 541–573 (1993). ArticleCAS Google Scholar
Stetler-Stevenson, W.G., Liotta, L.A. & Kleiner, D.E., Cellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis. FASEBJ.7, 1434–1441 (1993). ArticleCAS Google Scholar
Albelda, S.M. Role of integrins and other Cell adhesion molecules in tumor progression and metastasis. Lab. Invest.68, 4–17 (1993). CAS Google Scholar
Wewer, U.M., Taraboletti, G., Sobel, M.E., Albrechtsen, R. & Liotta, L.A. Role of laminin receptors in tumor Cell migration. Cancer Res.47, 5691–5698 (1987). CASPubMed Google Scholar
Lane, T.F. & Sage, E.H. The biology of SPARC, a protein that modulates Cell-matrix interactions. FASEB J.8, 163–173 (1994). ArticleCAS Google Scholar
Sage, E.H. & Bornstein, P., Cellular proteins that modulate Cell-matrix interactions. J. Biol. Chem.266, 14831–14834 (1991). CASPubMed Google Scholar
Tremble, P.M., Lane, T.F., Sage, E.H. & Werb, Z. SPARC, a secreted protein associated with morphogenesis and tissue remodelling, induces expression of metalloproteinases in fibroblasts through a novel extraCellular matrix-dependent pathway. J. Cell Biol.121, 1433–1444 (1993). ArticleCAS Google Scholar
Porter, P.L., Sage, E.H., Lane, T.F., Funk, S.H. & Gown, A.M. Distribution of SPARC in normal and neoplastic tissue. J. Histochem. Cytochem.43, 791–800 (1995). ArticleCAS Google Scholar
Podhajcer, O.L. et al. Comparative expression of the SPARC and stromelysin-3 genes in mammary tumors. Breast5, 13–20 (1996). Article Google Scholar
Bellahcene, A. & Castronovo, V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol.146, 95–100 (1995). CASPubMedPubMed Central Google Scholar
Porte, H. et al. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int. J. Cancer64, 70–75 (1995). ArticleCAS Google Scholar
Ledda, F. et al. The expression of the secreted protein acidic and rich in cysteine, SPARC, is associated with the neoplastic progression of human melanoma. J. Invest. Dermatol. (in the press).
Podhajcer, O.L. et al. Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi. J. Invest. Dermatol.104, 340–144 (1995). ArticleCAS Google Scholar
Terranova, V.P., Williams, J.E., Liotta, L.E. & Martin, G.R. Modulation of the metastatic activity of melanoma Cells by laminin and fibronectin. Science226, 982–985 (1984). ArticleCAS Google Scholar
Kanemoto, T. et al. Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc. Natl. Acad. Sci. USA87, 2279–2283 (1990). ArticleCAS Google Scholar
Seftor, R.E.B. et al. Role of the αvβ3 integrin in human melanoma Cell invasion. Proc. Natl. Acad. Sci. USA89, 1557–1561 (1992). ArticleCAS Google Scholar
Seftor, R.E.B., Seftor, E., Stetler-Stevenson, W.G. & Hendrix, M.J.C. The 72 kDa type IV collagenase is modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma invasion. Cancer Res.53, 3411–3415 (1993). CAS Google Scholar
Sage, E.H., Vemon, R.B., Funk, S.E., Everitt, E.A. & Angello, J. SPARC, a secreted protein associated with Cellular proliferation, inhibits Cell spreading in vitro and exhibits Ca2+-dependent binding to the extraCellular matrix. J. Cell Biol.109, 341–356 (1989). ArticleCAS Google Scholar
Lane, T.F., Iruela-Arispe, M. & Sage, E.H. Regulation of gene expression by SPARC during angiogenesis in vitro. Changes in fibronectin, thrombospondin-1 and plasminogen activator inhibitor-1. J. Biol. Chem.267, 16736–16745 (1992). CASPubMed Google Scholar
Kamihagi, K., Katayama, M., Ouchi, R. & Kato, I. Osteonectin/SPARC regulates extraCellular secretion rates of fibronectin and laminin extra Cellular matrix proteins. Biochem. Biophys. Res. Common.200, 423–428 (1994). ArticleCAS Google Scholar
Maurer, P. et al. High-affinity and low-affinity calcium binding and stability of the multidomain extraCellular 30-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur. J. Biochem.205, 233–240 (1992). ArticleCAS Google Scholar
Lane, T.F. & Sage, E.H. Functional mapping of SPARC: Peptides from two distinct sites modulate Cell adhesion. J. Cell Biol.111, 3065–3076 (1990). ArticleCAS Google Scholar
Pottgiesser, J. et al. Changes in calcium and collagen II binding caused by mutations in the EF hand and other domains of extraCellular matrix protein BM-40 (SPARC, osteonectin). J. Mol. Biol.238, 563–574 (1994). ArticleCAS Google Scholar
Funk, S.E., Sage, E.H. Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial Cells and fibroblasts. J. Cell Physiol.154, 53–63 (1993). ArticleCAS Google Scholar
Lane, T.F., Iruela-Arispe, M.L., Johnson, R.S. & Sage, E.H. SPARC is a source of copper-binding peptides that stimulate angiogenesis. J. Cell Biol.125, 929–943 (1994). ArticleCAS Google Scholar
Kochevar, G.J., Stanek, J.A. & Rucker, E.B. Truncated fibronectin. An autologous growth-promoting substance secreted by renal carcinoma Cells. Cancer69, 2311–2315 (1992). ArticleCAS Google Scholar
Lambert Vidmar, S., Lottspeich, F., Emod, Y., Planchenault, T. & Kleil-Dlouha, V. Latent fibronectin-degrading serine proteinase activity in N-terminal heparin-binding domain of human plasma fibronectin. Eur. J Biochem.201, 71–77 (1991). ArticleCAS Google Scholar
Mok, S.C., Chan, W.Y., Wong, K.K., Muto, M.G. & Berkowitz, R.S. SPARC, an extraCellular matrix protein with tumor-suppressing activity in human ovarian epithelial Cells. Oncogene12, 1895–1901 (1996). CASPubMed Google Scholar
Funk, S.E. & Sage, E.H., Ca2+-binding glycoprotein SPARC modulates Cell cycle progression in bovine aortic endothelial Cells. Proc. Natl Acad. Sci. USA88, 2648–2652 (1991). ArticleCAS Google Scholar
Everitt, E.A. & Sage, E.H. Expression of SPARC is correlated with altered morphologies in transfected F9 embryonal carcinoma Cells. Exp. Cell Res.199, 134–146 (1992). ArticleCAS Google Scholar
Oppenheim, J.J., Zachariae, C.O.C., Mukaida, N. & Matsushima, K. Properties of the novel proinflammatory supergene intercrineo cytokine family. Annu. Rev. Immunol.9, 617–648 (1991). ArticleCAS Google Scholar
Gilat, D., Cahalon, L., Harshkovitz, R. & Lider, O. Interplay of T Cells and cytokines in the context of enzymatically modified extraCellular matrix. Immunol. Today, 17, 16–20 (1996). ArticleCAS Google Scholar
Mercola, D. & Cohen, J.S. Antisense approaches to cancer gene therapy. Cancer Gene Ther.2, 47–59 (1995). CASPubMed Google Scholar
Trojan, J. et al. Treatment and prevention of rat glioblastoma by immunogenic C6 Cells expressing antisense insulin-like growth factor I RNA. Science259, 94–97 (1993). ArticleCAS Google Scholar
Laird, A.D., Brown, P.I. & Fausto, N. Inhibition of tumor growth in liver epithelial Cells transfected with a transforming growth factor α antisense gene. Cancer Res.54, 4224–232 (1994). CASPubMed Google Scholar
Aoki, K., Yoshida, T., Sugimura, T. & Terada, M. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res.55, 3810–3816 (1995). CASPubMed Google Scholar
Harlow, E. & Lane, D., Immunizationax. in: Antibodies: A Laboratory Manual. Ch. 5, 53–138 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988). Google Scholar
Rao, J.S. et al. Elevated levels of M, 92,000 type IV collagenase in human brain tumors. Cancer Res.53, 2208–2211 (1993). CASPubMed Google Scholar
Yabkowitz, R., Mansfield, P.J., Dixit, V.M. & Suchard, S.J. Motility of human carcinoma Cells in response to thrombospondin: Relationship to metastatic potential and thrombospondin structural domains. Cancer Res.53, 378–387 (1993). CASPubMed Google Scholar
Collier, I.E. et al. H-ras oncogene-transformed human bronchial epithelial Cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem.263, 6579–6587 (1988). CASPubMed Google Scholar