Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound (original) (raw)

References

  1. Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).
    Article CAS Google Scholar
  2. Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).
    Article CAS Google Scholar
  3. Giaccia, A.J. & Kastan, M.B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).
    Article CAS Google Scholar
  4. Asker, C., Wiman, K.G. & Selivanova, G. p53-induced apoptosis as a safeguard against cancer. Biochem. Biophys. Res. Commun. 265, 1–6 (1999).
    Article CAS Google Scholar
  5. Béroud, C. & Soussi, T. p53 gene mutation: software and database. Nucl. Acids Res. 26, 200–204 (1998).
    Article Google Scholar
  6. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).
    Article CAS Google Scholar
  7. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–31 (1997).
    Article CAS Google Scholar
  8. Evan, G. & Littlewood, T. A matter of life and cell death. Science. 281, 1317–1322 (1998).
    Article CAS Google Scholar
  9. Selivanova, G., Kawasaki, T., Ryabchenko, L. & Wiman, K.G. Reactivation of mutant p53: a new strategy for cancer therapy. Semin. Cancer Biol. 8, 369–378 (1998).
    Article CAS Google Scholar
  10. Wieczorek, A.M., Waterman, J.L.F., Waterman, M.J.F. & Halazonetis, T.D. Structure-based rescue of common tumor-derived p53 mutants. Nature Med. 2, 1143–1146 (1996).
    Article CAS Google Scholar
  11. Brachmann, R.K., Yu, K., Eby, Y., Pavletich, N.P & Boeke, J.D. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17, 1847–1859 (1998).
    Article CAS Google Scholar
  12. Nikolova, P.V., Wong, K-B., DeDecker, B., Henckel, J. & Fersht. A.R. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J. 19, 370–378 (2000).
    Article CAS Google Scholar
  13. Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med. 3, 632–638 (1997).
    Article CAS Google Scholar
  14. Kim, A.L. et al. Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J. Biol. Chem. 274, 34924–34931 (1999).
    Article CAS Google Scholar
  15. Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V. & Wiman, K.G. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell Biol. 19, 3395–3402 (1999).
    Article CAS Google Scholar
  16. Wiman, K.G., Magnusson, K.P., Ramqvist, T. & Klein, G. Mutant p53 detected in a majority of Burkitt lymphoma cell lines by monoclonal antibody PAb240. Oncogene 6, 1633–1639 (1991).
    CAS PubMed Google Scholar
  17. Lindström, M.S. et al. Immunolocalization of human p14ARF to the granular component of the interphase nucleolus. Exp. Cell Res. 256, 400–410 (2000).
    Article Google Scholar
  18. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents J. Clin. Invest. 104, 263–269 (1999).
    Article CAS Google Scholar
  19. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).
    Article CAS Google Scholar
  20. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).
    Article CAS Google Scholar
  21. Bullock, A.N., Henckel, J. & Fersht, A.R. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19, 1245–1256 (2000).
    Article CAS Google Scholar
  22. Selivanova, G. & Wiman, K.G. Functional rescue of mutant p53 as a strategy to combat cancer. in Tumor Supressing Viruses, Genes, and Drugs (ed. Maruta, H.) 397–415 (Academic Press, San Diego, California, 2001).
    Google Scholar
  23. Abarzúa, P., LoSardo, J.E., Gubler, M.L. & Neri, A. Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res. 55, 3490–3494 (1995).
    PubMed Google Scholar
  24. Friedlander, P., Legros, Y., Soussi, T. & Prives, C. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271, 25468–25478 (1996).
    Article CAS Google Scholar
  25. Hansen, S., Hupp, T.R. & Lane, D.P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. J. Biol. Chem. 271, 3917–3924 (1996).
    Article CAS Google Scholar
  26. Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Regulation of the specific DNA binding function of p53. Cell 71, 875–886 (1992).
    Article CAS Google Scholar
  27. Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 21, 3167–3174 (1993).
    Article CAS Google Scholar
  28. Müller-Tiemann, B.F., Halazonetis, T.D. & Elting, J.J. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl. Acad. Sci. USA 95, 6079–6084 (1998).
    Article Google Scholar
  29. Foster, B.A., Coffey, H.A., Morin, M.J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–2510 (1999).
    Article CAS Google Scholar
  30. Cohen, P.A., Hupp, T.R., Lane, D.P. & Daniels, D.A. Biochemical characterization of different conformational states of the Sf9 cell-purified p53His175 mutant protein. FEBS Lett. 463, 179–184 (1999).
    Article CAS Google Scholar
  31. Selivanova, G. et al. The single-stranded DNA end binding site of p53 coincides with the C-terminal regulatory region. Nucl. Acids Res. 24, 3560–3567 (1996).
    Article CAS Google Scholar

Download references