Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound (original) (raw)
References
Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev.10, 1054–1072 (1996). ArticleCAS Google Scholar
Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev.12, 2984–2991 (1998). ArticleCAS Google Scholar
Giaccia, A.J. & Kastan, M.B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev.12, 2973–2983 (1998). ArticleCAS Google Scholar
Asker, C., Wiman, K.G. & Selivanova, G. p53-induced apoptosis as a safeguard against cancer. Biochem. Biophys. Res. Commun.265, 1–6 (1999). ArticleCAS Google Scholar
Béroud, C. & Soussi, T. p53 gene mutation: software and database. Nucl. Acids Res.26, 200–204 (1998). Article Google Scholar
Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science266, 807–810 (1994). ArticleCAS Google Scholar
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell88, 323–31 (1997). ArticleCAS Google Scholar
Evan, G. & Littlewood, T. A matter of life and cell death. Science.281, 1317–1322 (1998). ArticleCAS Google Scholar
Selivanova, G., Kawasaki, T., Ryabchenko, L. & Wiman, K.G. Reactivation of mutant p53: a new strategy for cancer therapy. Semin. Cancer Biol.8, 369–378 (1998). ArticleCAS Google Scholar
Wieczorek, A.M., Waterman, J.L.F., Waterman, M.J.F. & Halazonetis, T.D. Structure-based rescue of common tumor-derived p53 mutants. Nature Med.2, 1143–1146 (1996). ArticleCAS Google Scholar
Brachmann, R.K., Yu, K., Eby, Y., Pavletich, N.P & Boeke, J.D. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J.17, 1847–1859 (1998). ArticleCAS Google Scholar
Nikolova, P.V., Wong, K-B., DeDecker, B., Henckel, J. & Fersht. A.R. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J.19, 370–378 (2000). ArticleCAS Google Scholar
Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med.3, 632–638 (1997). ArticleCAS Google Scholar
Kim, A.L. et al. Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J. Biol. Chem.274, 34924–34931 (1999). ArticleCAS Google Scholar
Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V. & Wiman, K.G. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell Biol.19, 3395–3402 (1999). ArticleCAS Google Scholar
Wiman, K.G., Magnusson, K.P., Ramqvist, T. & Klein, G. Mutant p53 detected in a majority of Burkitt lymphoma cell lines by monoclonal antibody PAb240. Oncogene6, 1633–1639 (1991). CASPubMed Google Scholar
Lindström, M.S. et al. Immunolocalization of human p14ARF to the granular component of the interphase nucleolus. Exp. Cell Res.256, 400–410 (2000). Article Google Scholar
Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents J. Clin. Invest.104, 263–269 (1999). ArticleCAS Google Scholar
Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science265, 346–355 (1994). ArticleCAS Google Scholar
Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev.8, 1235–1246 (1994). ArticleCAS Google Scholar
Bullock, A.N., Henckel, J. & Fersht, A.R. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene19, 1245–1256 (2000). ArticleCAS Google Scholar
Selivanova, G. & Wiman, K.G. Functional rescue of mutant p53 as a strategy to combat cancer. in Tumor Supressing Viruses, Genes, and Drugs (ed. Maruta, H.) 397–415 (Academic Press, San Diego, California, 2001). Google Scholar
Abarzúa, P., LoSardo, J.E., Gubler, M.L. & Neri, A. Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res.55, 3490–3494 (1995). PubMed Google Scholar
Friedlander, P., Legros, Y., Soussi, T. & Prives, C. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem.271, 25468–25478 (1996). ArticleCAS Google Scholar
Hansen, S., Hupp, T.R. & Lane, D.P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. J. Biol. Chem.271, 3917–3924 (1996). ArticleCAS Google Scholar
Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Regulation of the specific DNA binding function of p53. Cell71, 875–886 (1992). ArticleCAS Google Scholar
Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res.21, 3167–3174 (1993). ArticleCAS Google Scholar
Müller-Tiemann, B.F., Halazonetis, T.D. & Elting, J.J. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl. Acad. Sci. USA95, 6079–6084 (1998). Article Google Scholar
Foster, B.A., Coffey, H.A., Morin, M.J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–2510 (1999). ArticleCAS Google Scholar
Cohen, P.A., Hupp, T.R., Lane, D.P. & Daniels, D.A. Biochemical characterization of different conformational states of the Sf9 cell-purified p53His175 mutant protein. FEBS Lett.463, 179–184 (1999). ArticleCAS Google Scholar
Selivanova, G. et al. The single-stranded DNA end binding site of p53 coincides with the C-terminal regulatory region. Nucl. Acids Res.24, 3560–3567 (1996). ArticleCAS Google Scholar