Nitric oxide's reactions with hemoglobin: a view through the SNO-storm (original) (raw)
Les prix Nobel: 1998. 210–307 (Nobel Foundation, Stockholm, Sweden, 1999).
Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature380, 221–226 (1996). ArticleCAS Google Scholar
Gow, A.J., Luchsinger, B.P., Pawloski, J.R., Singel, D.J. & Stamler, J.S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl. Acad. Sci. USA96, 9027–9032 (1999). ArticleCAS Google Scholar
Stamler, J.S. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science276, 2034–2037 (1997). ArticleCAS Google Scholar
Gow, A.J. & Stamler, J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature391, 169–173 (1998). ArticleCAS Google Scholar
McMahon, T.J. et al. Nitric oxide in the human respiratory cycle. Nat. Med.3, 711–717 (2002). Article Google Scholar
Garel, M.C. et al. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J. Biol. Chem.261, 14704–14709 (1986). CASPubMed Google Scholar
Doyle, M.P. & Hoekstra, J.W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem.14, 351–358 (1981). ArticleCAS Google Scholar
Herold, S., Exner, M. & Nauser, T. Kinetic and mechanistic studies of the NO*-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry40, 3385–3395 (2001). ArticleCAS Google Scholar
Dou, Y., Maillett, D.H., Eich, R.F. & Olson, J.S. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys. Chem.98, 127–148 (2002). ArticleCAS Google Scholar
Gross, S.S. & Lane, P. Physiological reactions of nitric oxide and hemoglobin: a radical rethink. Proc. Natl. Acad. Sci. USA96, 9967–9969 (1999). ArticleCAS Google Scholar
Gladwin, M.T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA97, 9943–9948 (2000). ArticleCAS Google Scholar
Huang, Z. et al. Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochim. Biophys. Acta1568, 252–260 (2001). ArticleCAS Google Scholar
Huang, Z. et al. Kinetics of nitric oxide binding to R-state hemoglobin. Biochem. Biophys. Res. Commun.292, 812–818 (2002). ArticleCAS Google Scholar
Han, T.H., Hyduke, D.R., Vaughn, M.W., Fukuto, J.M. & Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA99, 7763–7768 (2002). ArticleCAS Google Scholar
Zhang, Y. & Hogg, N. Mixing artifacts from the bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosothiol formation. Free Radic. Biol. Med.32, 1212–1219 (2002). ArticleCAS Google Scholar
Joshi, M.S. et al. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc. Natl. Acad. Sci. USA17, 10341–10346 (2002). Article Google Scholar
Luchsinger, B.P. et al. Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the β subunits. Proc. Natl. Acad. Sci. USA100, 461–466 (2003). ArticleCAS Google Scholar
Fernandez, B.O., Lorkovic, I.M. & Ford, P.C. Nitrite catalyzes reductive nitrosylation of the water-soluble ferri-heme model Fe(III)(TPPS) to Fe(II)(TPPS)(NO). Inorg. Chem.42, 2–4 (2003). ArticleCAS Google Scholar
Spencer, N.Y. et al. Reoxygenation/deoxygenation cycles of nitrosylhemoglobin. Free Radic. Biol. Med.33, S381 (2002). Google Scholar
McMahon, T.J. & Stamler, J.S. Concerted nitric oxide/oxygen delivery by hemoglobin. Meth. Enzymol.301, 99–114 (1999). ArticleCAS Google Scholar
Patel, R.P. et al. Biochemical characterization of human S-nitrosohemoglobin. Effects on oxygen binding and transnitrosation. J. Biol. Chem.274, 15487–15492 (1999). ArticleCAS Google Scholar
McMahon, T.J., Exton Stone, A., Bonaventura, J., Singel, D.J. & Solomon Stamler, J. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J. Biol. Chem.275, 16738–16745 (2000). ArticleCAS Google Scholar
Deem, S., Gladwin, M.T., Berg, J.T., Kerr, M.E. & Swenson, E.R. Effects of S-nitrosation of hemoglobin on hypoxic pulmonary vasoconstriction and nitric oxide flux. Am. J. Respir. Crit. Care Med.163, 1164–1170 (2001). ArticleCAS Google Scholar
Deem, S. et al. Effects of S-nitrosation and cross-linking of hemoglobin on hypoxic pulmonary vasoconstriction in isolated rat lungs. Circ. Res.91, 626–632 (2002). ArticleCAS Google Scholar
Gladwin, M.T. et al. S-nitrosohemoglobin is unstable in the reductive red cell environment and lacks O2/NO-linked allosteric function. J. Biol. Chem.21, 27818–27828 (2002). Article Google Scholar
Wolzt, M. et al. Biochemical characterization of S-nitrosohemoglobin. Mechanisms underlying synthesis, no release, and biological activity. J. Biol. Chem.274, 28983–28990 (1999). ArticleCAS Google Scholar
Hobbs, A., Gladwin, M., Patel, R., Williams, D. & Butler, A. Haemoglobin: NO transporter, NO inactivator or NOne of the above? Trends Pharmacol. Sci.23, 406–411 (2002). ArticleCAS Google Scholar
Agvald, P., Adding, L.C., Artlich, A., Persson, M.G. & Gustafsson, L.E. Mechanisms of nitric oxide generation from nitroglycerin and endogenous sources during hypoxia in vivo. Br. J. Pharmacol.135, 373–382 (2002). ArticleCAS Google Scholar
Crawford, J.H., White, R.C. & Patel, R.P. Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme and NO oxidation states. Blood first edition paper, 30 January 2003 (DOI 10.1182/blood-2002-12-3825).
Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res.32, 1–9 (2000). ArticleCAS Google Scholar
Jourd'heuil, D., Gray, L. & Grisham, M.B. S-nitrosothiol formation in blood of lipopolysaccharide-treated rats. Biochem. Biophys. Res. Commun.273, 22–26 (2000). ArticleCAS Google Scholar
Marley, R. et al. Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radic. Biol. Med.31, 688–696 (2001). ArticleCAS Google Scholar
Rossi, R. et al. Physiological levels of S-nitrosothiols in human plasma. Circ. Res.89, E47–E47 (2001). ArticleCAS Google Scholar
Cannon, R.O. et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Invest.108, 279–287 (2001). ArticleCAS Google Scholar
Rassaf, T., Bryan, N.S., Kelm, M. & Feelisch, M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic. Biol. Med.33, 1590–1596 (2002). ArticleCAS Google Scholar
Feelisch, M. et al. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J.16, 1775–1785 (2002). ArticleCAS Google Scholar
Rassaf, T. et al. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J. Clin. Invest.109, 1241–1248 (2002). ArticleCAS Google Scholar
Rees, D.D., Palmer, R.M., Hodson, H.F. & Moncada, S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br. J. Pharmacol.96, 418–424 (1989). ArticleCAS Google Scholar
Amezcua, J.L., Palmer, R.M., de Souza, B.M. & Moncada, S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br. J. Pharmacol.97, 1119–1124 (1989). ArticleCAS Google Scholar
Chu, A. et al. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J. Clin. Invest.87, 1964–1968 (1991). ArticleCAS Google Scholar
Panza, J.A., Casino, P.R., Kilcoyne, C.M. & Quyyumi, A.A. Role of endothelium-derived nitric oxide in the abnormal endothelium- dependent vascular relaxation of patients with essential hypertension. Circulation87, 1468–1474 (1993). ArticleCAS Google Scholar
Quyyumi, A.A. et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J. Clin. Invest.95, 1747–1755 (1995). ArticleCAS Google Scholar
Gladwin, M.T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc. Natl. Acad. Sci. USA97, 11482–11487 (2000). ArticleCAS Google Scholar
Schechter, A.N., Gladwin, M.T. & Cannon, R.O. NO solutions? J. Clin. Invest.109, 1149–1151 (2002). ArticleCAS Google Scholar
Furchgott, R.F. & Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature288, 373–376 (1980). ArticleCAS Google Scholar
Ignarro, L.J., Byrns, R.E., Buga, G.M. & Wood, K.S. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res.61, 866–879 (1987). ArticleCAS Google Scholar
Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA84, 9265–9269 (1987). ArticleCAS Google Scholar
Palmer, R.M., Ferrige, A.G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature327, 524–526 (1987). ArticleCAS Google Scholar
Palmer, R.M., Ashton, D.S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature333, 664–666 (1988). ArticleCAS Google Scholar
Coin, J.T. & Olson, J.S. The rate of oxygen uptake by human red blood cells. J. Biol. Chem.254, 1178–1190 (1979). CASPubMed Google Scholar
Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem.273, 18709–18713 (1998). ArticleCAS Google Scholar
Vaughn, M.W., Kuo, L. & Liao, J.C. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol.274, H1705–H1714 (1998). CASPubMed Google Scholar
Butler, A.R., Megson, I.L. & Wright, P.G. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta1425, 168–176 (1998). ArticleCAS Google Scholar
Liao, J.C., Hein, T.W., Vaughn, M.W., Huang, K.T. & Kuo, L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA96, 8757–8761 (1999). ArticleCAS Google Scholar
Vaughn, M.W., Huang, K.T., Kuo, L. & Liao, J.C. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem.275, 2342–2348 (2000). ArticleCAS Google Scholar
Huang, K.T. et al. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl. Acad. Sci. USA98, 11771–11776 (2001). ArticleCAS Google Scholar
Reiter, C.D. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med.8, 1383–1389 (2002). ArticleCAS Google Scholar
Deem, S., Swenson, E.R., Alberts, M.K., Hedges, R.G. & Bishop, M.J. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am. J. Respir. Crit. Care Med.157, 1181–1186 (1998). ArticleCAS Google Scholar
Doherty, D.H. et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol.16, 672–676 (1998). ArticleCAS Google Scholar
Sloan, E.P. et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA282, 1857–1864 (1999). ArticleCAS Google Scholar
Espey, M.G., Thomas, D.D., Miranda, K.M. & Wink, D.A. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc. Natl. Acad. Sci. USA99, 11127–11132 (2002). ArticleCAS Google Scholar
Fox-Robichaud, A. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest.101, 2497–2505 (1998). ArticleCAS Google Scholar
Stamler, J.S. et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc. Natl. Acad. Sci. USA89, 7674–7677 (1992). ArticleCAS Google Scholar
Lim, D.G. et al. Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc. Natl. Acad. Sci. USA99, 15941–15946 (2002). ArticleCAS Google Scholar