p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3 (original) (raw)
Vogelstein, B. & Kinzler, K.W. . p53 function and dysfunction. Cell70, 523–526 (1992). CASPubMed Google Scholar
Chen, L.-C. et al. Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. Proc. natn. Acad. Sci. U.S.A.88, 3847–3851 (1991). CAS Google Scholar
Takita, K.-I. et al. Correlation of loss of alleles on the short arm of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res.52, 3914–3917 (1992). CASPubMed Google Scholar
Deng, G. et al. Loss of heterozygosity and p53 gene mutations in breast cancer. Cancer Res.54, 499–505 (1994). CASPubMed Google Scholar
Cornelis, R.S. et al. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res.54, 4200–4206 (1994). CASPubMed Google Scholar
Coles, C. et al. Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet336, 761–763 (1990). CASPubMed Google Scholar
Makos, M. et al. Distinct hypeimethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc. natn. Acad. Sci. U.S.A.89, 1929–1933 (1992). CAS Google Scholar
Makos, M. et al. DNA hypermethylation is associated with 17p allelic loss in neural tumors. Cancer Res.53, 2715–2718 (1993). CASPubMed Google Scholar
Makos, M. et al. Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res.53, 2719–2722 (1993). CASPubMed Google Scholar
Baylin, S.B. et al. Abnormal patterns of DNA methylation in human neoplasia: Potential consequences fortumorprogression. Cancer Cells3, 383–390 (1991). CASPubMed Google Scholar
Jones, P.A. & Buckley, J.D. The role of DNA methylation in cancer. Adv. Cancer Res.54, 1–23 (1990). CASPubMed Google Scholar
Herman, J.G. et al. Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc. natn. Acad. Sci.91, 9700–9704 (1994). CAS Google Scholar
Ottaviano, Y.L. et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res.54, 2552–2555 (1994). CASPubMed Google Scholar
Issa, J.-P.J. et al. Methylation of the estrogen receptor CpG island links aging and neoplasia in human colon. Nature Genet.7, 536–540 (1994). CASPubMed Google Scholar
Steenman, M.J.C. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet.7, 433–439 (1994). CASPubMed Google Scholar
Ledbetter, D.H. et al. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated “island” in the Miller-Dicker chromosome region. Proc. natn. Acad. Sci. U.S.A.86, 5136–5140 (1989). CAS Google Scholar
Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet.3, 266–272 (1993). CASPubMed Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol.215, 403–410 (1990). CASPubMed Google Scholar
Numoto, M. et al. Transcriptional represser ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res.21, 3767–3775 (1993). CASPubMedPubMed Central Google Scholar
Harrison, S.D. & Travers, A.A. The tramtrack gene encodes a drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J.9, 207–216 (1990). CASPubMedPubMed Central Google Scholar
DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W. & Guild, G.M. The drosophila broad-complex encodes a family of related proteins containing zinc fingers. Genetics129, 385–397 (1991). CASPubMedPubMed Central Google Scholar
Chardin, P., Courtois, G., Mattei, M.-G. & Gisselbrecht, S. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucleic Acids Res.19, 1431–1436 (1991). CASPubMedPubMed Central Google Scholar
Hromas, R. et al. A retinoic acid-responsive human zinc finger gene, MZF-1, preferentially expressed in myeloid cells. J. biol. Chem.266, 14183–14187 (1991). CASPubMed Google Scholar
Chen, Z. et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J.12, 1161–11671 (1993). CASPubMedPubMed Central Google Scholar
Kerckaert, J.-P., Deweindt, C., Tilly, H., Quief, S., Lecocq, G. & Bastard, C. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet.5, 66–70 (1993). CASPubMed Google Scholar
Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science262, 747–750 (1993). CASPubMed Google Scholar
Soeller, W.C., Oh, C.E. & Kornberg, T.B. Isolation of cDNAs encoding the drosophila GAGA transcription factor. Molec. cell. Biol.13, 7961–7970 (1993). CASPubMed Google Scholar
Ruppert, J.M. et al. The GLI-Kruppel family of human genes. Molec. cell. Biol.8, 3104–3113 (1988). CASPubMed Google Scholar
El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet.1, 45–49 (1992). CASPubMed Google Scholar
Kern, S.E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science252, 1708–1711 (1991). CASPubMed Google Scholar
Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E. & Shay, J.W. A transcriptionally active DNA-binding site for human p53 protein complexes. Molec. cell. Biol.12, 2866–2871 (1992). CASPubMed Google Scholar
El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell75, 817–825 (1993). CAS Google Scholar
Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K.V. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science249, 912–915 (1990). CASPubMed Google Scholar
Riggs, A.D. & Pfeifer, G.D. X-chromosome inactivation and cell memory. Trends Genet.8, 169–174 (1992). CASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). CASPubMed Google Scholar
Yisraeli, J. et al. Muscle specific activation of a methylated chimeric actin gene. Cell46, 409–416 (1986). CASPubMed Google Scholar
Runnebaum, I.B., Nagarajan, M., Bowman, M., Soto, D. & Sukumar, S. Mutations in p53 as potential molecular markers for human breast cancer. Proc. natn. Acad. Sci. U.S.A.88, 10657–10661 (1991). CAS Google Scholar
Negrini, M. et al. Tumor and growth suppression of breast cancer cells by chromosome 17-associated functions. Cancer Res.54, 1818–1824 (1994). CASPubMed Google Scholar
Chen, P., Ellmore, N. & Weissman, B.E. Functional evidence for a second tumor suppressor gene on human chromosome 17. Molec. cell. Biol.14, 534–542 (1994). CASPubMed Google Scholar
Hensel, C.H., Xiang, R.H., Sakaguchi, A.Y. & Naylor, S.L. Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene6, 1067–1071 (1991). CASPubMed Google Scholar
Baker, S.J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res.50, 7717–7722 (1990). CASPubMed Google Scholar
Van Meir, E.G. et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res.54, 649–652 (1994). CASPubMed Google Scholar
Chen, C.Y. et al. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. natn. Acad. Sci. U.S.A.91, 2684–2688 (1994). CAS Google Scholar
Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell71, 587–597 (1992). CASPubMed Google Scholar
Miyashita, T. et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene9, 1799–1805 (1994). CAS Google Scholar
Tsukiyama, T., Becker, P.B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature367, 525–532 (1994). CASPubMed Google Scholar
Bardwell, V.J. & Treisman, R. The POZ domain: A conserved protein-protein interaction motif. Genes Dev.8, 1664–1677 (1994). CASPubMed Google Scholar
Miki, T., Kawamata, N., Hirosawa, S. & Aoki, N. Gene involved in the 3q27 translocation associated with B-cell lymphoma, BCL5, encodes a Kruppel-like zinc-finger protein. Blood83, 26–32 (1994). CASPubMed Google Scholar
Carney, D.N., Bepler, G. & Gazdar, A.F. The serum-free establishment and in vitro growth properties of classic and variant small cell lung cancer cell lines. Recent Results Cancer Res.99, 157–166 (1985). CASPubMed Google Scholar