Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats (original) (raw)

References

  1. Schwartz, M., Cohen, A., Stein-Izsak, C. & Belkin, M. Dichotomy of the glial cell response to axonal injury and regeneration FASEB J. 3, 2371–2378 (1989).
    Article CAS Google Scholar
  2. Aguayo, A.J., David, S. & Bray, G.M. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J. Exp. Biol. 95, 231–240 (1981).
    CAS PubMed Google Scholar
  3. Schnell, L. & Schwab, M.E. Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur. J. Neurosci. 5, 1156–1171 (1993).
    Article CAS Google Scholar
  4. Cheng, H., Cao, Y. & Olson, L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513 (1996).
    Article CAS Google Scholar
  5. Chen, D.F., Jhaveri, S. & Schneider, G.E. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc. Natl. Acad. Sci. USA 92, 7287–7291 (1995).
    Article CAS Google Scholar
  6. Grill, R., Murai, K., Blesch, A., Gage, F.H. & Tuszynski, M.H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal regrowth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).
    Article CAS Google Scholar
  7. Harel, A. et al. Optic nerve regeneration in adult fish and apolipoprotein A-1. J. Neurochem. 52, 1218–1228 (1989).
    Article CAS Google Scholar
  8. Eitan, S. et al. Identification of an interleukin 2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc. Natl. Acad. Sci. USA 89, 5442–5446 (1992).
    Article CAS Google Scholar
  9. Eitan, S. & Schwartz, M. A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261, 106–108 (1993).
    Article CAS Google Scholar
  10. Eitan, S. et al. Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264, 1764–1768 (1994).
    Google Scholar
  11. Faber-Elman, A., Lavie, V., Schvartz, I., Shaltiel, S. & Schwartz, M. Vitronectin overrides a negative effect of TNF-alpha on astrocyte migration. FASEB J. 9, 1605–1613 (1995).
    Article CAS Google Scholar
  12. Faber-Elman, A., Solomon, A., Abraham, J.A., Marikovsky, M. & Schwartz, M. Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation. J. Clin. Invest. 97, 162–171 (1996).
    Article CAS Google Scholar
  13. Lazarov-Spiegler, O., Solomon, A.S., Hirschberg, D.L., Lavie, V. & Schwartz, M. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10, 1296–1302 (1996).
    Article CAS Google Scholar
  14. Hirschberg, D.L. & Schwartz, M. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier. J. Neuroimmunol. 61, 89–96 (1995).
    Article CAS Google Scholar
  15. Lotan, M. & Schwartz, M. Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. 8, 1026–1033 (1994).
    Article CAS Google Scholar
  16. Perry, V.H., Brown, M.C. & Gordon, S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165, 1218–1223 (1987).
    Article CAS Google Scholar
  17. George, R. & Griffin, J.W. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp. Neurol. 129, 225–236 (1994).
    Article CAS Google Scholar
  18. Streilein, J.W. Tissue barriers, immunosuppressive microenvironments and privileged sites: the eye's point of view. Reg. Immunol. 5, 253–268 (1993).
    CAS PubMed Google Scholar
  19. Schwartz, M., Hirschberg, D.L. & Beserman, P. Central nervous system regeneration and the immune system. Mol. Med. Today 1, 60–61 (1995).
    Article CAS Google Scholar
  20. Lazarov-Spiegler, O., Rapalino, O., Agranov, G. & Schwartz, M. Restricted inflammatory reaction in the CNS: a key impediment to regeneration. Mol. Med. Today, (in the press).
  21. Basso, D.M. et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter animal spinal cord injury study. J. Neurotrauma 13, 343–359, (1996).
    Article CAS Google Scholar
  22. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).
    Article CAS Google Scholar
  23. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 139, 244–256 (1996).
    Article CAS Google Scholar
  24. Brooks, C.M. & Peck, M.E. Effect of various cortical lesions on development of placing and hopping reactions in rats. J. Neurophysiol. 3, 66–73 (1940).
    Article Google Scholar
  25. Goldberger, M.E., Bregman, B.S., Vierck, C.J. Jr., & Brown, M. Criteria for assessing recovery of function after spinal cord injury: behavioral methods. Exp. Neurol. 107, 113–117 (1990).
    Article CAS Google Scholar
  26. Kalderon, N. & Fuks, Z. Severed corticospinal axons recover electrophysiologic control of muscle activity after x-ray therapy in lesioned adult spinal cord. Proc. Natl. Acad. Sci. USA 93, 11185–11190 (1996).
    Article CAS Google Scholar
  27. Konrad, P.E. & Tacker, W.A. Jr., Suprathreshold brain stimulation activates non-corticospinal motor evoked potentials in cats. Brain Res. 522, 14–29 (1990).
    Article CAS Google Scholar
  28. Levy, W.J., McCaffrey, M., York, D.H. & Tanzer, F., Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery 15, 214–227 (1984).
    Article CAS Google Scholar
  29. Nashmi, R., Imamura, H., Tator, C.H. & Fehlings, M.G. Serial recording of somatosensory and myoelectric motor evoked potentials: role in assessing functional recovery after graded spinal cord injury the rat. J. Neurotrauma 14, 151–159, 1997.
    Article CAS Google Scholar
  30. Blaugrund, E. et al. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats. J. Comp. Neurol. 330, 105–112 (1993).
    Article CAS Google Scholar
  31. Young, W. Spinal cord regeneration. Science 273, 451 (1996).
    Article CAS Google Scholar
  32. Ben Zeev-Brann, A., Lazarov-Spiegler, O., Brenner, T. & Schwartz, M. Differential effects of central and peripheral nerves on macrophages and microglia. Glia, (in the press).
  33. Lazarov-Spiegler, O., Solomon, A.S. & Schwartz, M. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optnerve. Glia, (in the press).
  34. Schwab, M.E. & Thoenen, H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5, 2415–2423 (1985).
    Article CAS Google Scholar
  35. Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G. & Silver, J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).
    Article CAS Google Scholar
  36. Schwab, M.E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).
    Article CAS Google Scholar
  37. Hikawa, N. & Takenaka, T. Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell. Mol. Neurobiol. 16, 517–528 (1996).
    Article CAS Google Scholar
  38. Harel, A., Fainaru, M., Rubinstein, M., Tal, N. & Schwartz, M. Fish apolipoprotein-A-I has heparin binding activity; implication for nerve regeneration. J. Neurochem. 55, 1237–1243 (1990).
    Article CAS Google Scholar
  39. Ignatius, M.J. et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. USA 83, 1125–1129 (1986).
    Article CAS Google Scholar
  40. Bisby, M.A. & Chen, S., Wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. Brain Res. 530, 117–120 (1990).
    Article CAS Google Scholar
  41. Heumann, R. et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84, 8735–8739 (1987).
    Article CAS Google Scholar
  42. Stoll, G., Griffin, J.W., Li, C.Y. & Trapp, B.D. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J. Neurocytol. 18, 671–683 (1989).
    Article CAS Google Scholar
  43. Xu, X.M., Chen, A., Guenard, V., Kleitman, N. & Bunge, M.B., Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26, 1–16 (1997).
    Article CAS Google Scholar
  44. Lazarov-Spiegler, O., Solomon, A.S. & Schwartz, M. The inflammatory reaction is an essential process for adult mammalian CNS regrowth. Vision Res. (in the press).
  45. Bregman, B.S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).
    Article CAS Google Scholar
  46. Richardson, P.M., McGuinness, U.M. & Aguayo, A.J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).
    Article CAS Google Scholar
  47. Ye, J.H. & Houle, J.D. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp. Neurol. 143, 70–81 (1997).
    Article CAS Google Scholar
  48. Rabchevsky, A.G. & Streit, W.J. Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J. Neurosci. Res. 47, 34–48 (1997).
    Article CAS Google Scholar
  49. Gale, K., Kerasidis, H. & Wrathall, J.R. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol. 88, 123–134 (1985).
    Article CAS Google Scholar
  50. Kerasidis, H., Wrathall, J.R. & Gale, K. Behavioral assessment of fundamental deficit in rats with contusive spinal cord injury. J. Neurosci. Methods 20, 167–179 (1987).
    Article CAS Google Scholar
  51. Simpson, R.K. & Baskin, D.S. Corticomotor evoked potentials in acute and chronic blunt spinal cord injury in the rat: correlation with neurological outcome and histological damage. Neurosurgery 20, 131–137 (1987).
    Article CAS Google Scholar
  52. Gruner, J.A., Wade, C.K., Menna, G. & Stokes, B.T. Myoelectric evoked potentials versus locomotor recovery in chronic spinal cord injured rats. J. Neurotrauma. 10, 327–347 (1993).
    Article CAS Google Scholar
  53. Mediratta, N.K. & Nicoll, J.A. Conduction velocities of corticospinal axons in the rat studied by recording cortical antidromic responses. J. Physiol. Lond. 336, 545–561 (1983).
    Article CAS Google Scholar
  54. Nance, D.M. & Burns, J. Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res. Bull. 25, 139–145 (1990).
    Article CAS Google Scholar

Download references