A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis (original) (raw)
References
Oldstone, M.B. How viruses escape from cytotoxic T lymphocytes: molecular parameters and players. Virology234, 179–185 (1997). ArticleCAS Google Scholar
Masucci, M.G. & Ernberg, I. Epstein-Barr virus: Adaptation to a life within the immune sytem. Trends Mkrobiol.2, 125–130 (1994). ArticleCAS Google Scholar
Rickinson, A.B. & Moss, D.J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu. Rev. Immunol.15, 405–431 (1997). ArticleCAS Google Scholar
Blake, N. et al. Human CD8(+) T Cell responses to EBV EBNA1-HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity7, 791–802 (1997). ArticleCAS Google Scholar
Falk, K. et al. The role of repetitive DNA sequences in the size variation of Epstein-Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. J. Gen. Virol.76, 779–790 (1995). ArticleCAS Google Scholar
Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr Virus nuclear antigen-1. Nature375, 685–688 (1995). ArticleCAS Google Scholar
Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epsein-Barr-virus nuclear antigen 1. Proc. Natl. Acad. Sci USA94, 12616–12621 (1997). ArticleCAS Google Scholar
Goldberg, A.L., Akopian, T.N., Kisselev, A.F., Lee, D.H. & Rohrwild, M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol. Chem.378, 131–140 (1997). CASPubMed Google Scholar
Berg, A.A. & Baldwin, A.S.J. The IκB proteins: multifunctional regulators of rel/NF-κB transcription factors. Genet Dev.7, 2064–2070 (1993). Article Google Scholar
Brown, K., Park, S., Kanno, T., Franzoso, G. & Siebenlist, U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc. Notl. Acad. Sci USA90, 2532–2536 (1993). ArticleCAS Google Scholar
Henkel, T. et al. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature365, 182–185 (1993). ArticleCAS Google Scholar
DiDonato, J.A., Mercurio, F. & Karin, M. Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol. Cell. Biol.15, 1302–1311 (1995). ArticleCAS Google Scholar
Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol. Cell. Biol.15, 2166–2172 (1995). ArticleCAS Google Scholar
Rise, N.R. & Ernst, M.K. In vivo control of NF-kappaB activation by IkappaBalpha. EMBO J.12, 4685–4695 (1993). Article Google Scholar
Krappmann, D., Wulczyn, F.G. & Scheidereit, C. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J.15, 6716–6726 (1996). ArticleCAS Google Scholar
Wang, C.Y., Mayo, M.W. & Baldwin, A.S.J. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science27A, 784–787 (1997). Google Scholar
Beg, A.A. & Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-in-duced cell death. Science274, 782–784 (1996). ArticleCAS Google Scholar
Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. & Verma, I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science27A, 787–789 (1996). Article Google Scholar
Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev.9, 1586–1597 (1995). ArticleCAS Google Scholar
Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science267, 1485–1488(1995). ArticleCAS Google Scholar
Traenckner, E.B. et al. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBOJ.14, 2876–2883 (1995). ArticleCAS Google Scholar
Rodriguez, M.S. et al. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Oncogene12, 2425–2435 (1996). CASPubMed Google Scholar
Miyamoto, S., Maki, M., Schmitt, M.J., Hatanaka, M. & Verma, I.M. Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc. Natl. Acad. Sci USA91, 12740–12744 (1994). ArticleCAS Google Scholar
Lin, Y.C., Brown, K. & Siebenlist, U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci USA92, 552–556 (1995). ArticleCAS Google Scholar
Finco, T.S., Beg, A.A. & Baldwin, A.S.J. Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc. Natl. Acad. Sci USA91, 11884–11888 (1994). ArticleCAS Google Scholar
Alkalay, I. et al. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci USA92, 10599–10603 (1995). ArticleCAS Google Scholar
Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell79, 13–21 (1994). ArticleCAS Google Scholar
Yates, J.L., Camiolo, S.M., Ali, S. & Ying, A. Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology222, 1–13 (1996). ArticleCAS Google Scholar
Thiel, B.L., Guess, K.B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers41, 703–719 (1997). ArticleCAS Google Scholar
Simmons, A.H., Michal, C.A. & Jelinski, L.W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science271, 84–87 (1996). ArticleCAS Google Scholar
Williams, J., Williams, M., Liu, C. & Telling, G. Assessing the role of El A in the differential oncogenicity of group A and group C human adenoviruses. Curr. Top. Microbiol. Immunol.199, 149–175 (1995). CASPubMed Google Scholar
Lin, L. & Ghosh, S. A glycin-rich region of NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol.16, 2248–2254 (1996). ArticleCAS Google Scholar
Baumeister, W. & Lupas, A. The proteasome. Curr. Opin. Struct. Biol.7, 273–278 (1997). ArticleCAS Google Scholar
Fisher, E.A. et al. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J. Biol. Chem.272, 20427–20434 (1997). ArticleCAS Google Scholar
Lee, D.H., Sherman, M.Y. & Goldberg, A.L. Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 4773–4781 (1996). ArticleCAS Google Scholar
Bercovich, B. et al. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem.272, 9002–9010 (1997). ArticleCAS Google Scholar
DiDonato, J. et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol.16, 1295–1304 (1996). ArticleCAS Google Scholar
Hendil, K.B., Kristensen, P. & Uerkvitz, W. Human proteasomes analysed with monoclonal antibodies. Biochem. J.305, 245–252 (1995). ArticleCAS Google Scholar
Devary, Y., Rosette, C., DiDonato, J.A. & Karin, M. NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science261, 1442–1445 (1993). ArticleCAS Google Scholar
Dillner, J. et al. Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proc. Natl. Acad. Sci USA81, 4652–4656 (1984). ArticleCAS Google Scholar