A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis (original) (raw)

References

  1. Oldstone, M.B. How viruses escape from cytotoxic T lymphocytes: molecular parameters and players. Virology 234, 179–185 (1997).
    Article CAS Google Scholar
  2. Masucci, M.G. & Ernberg, I. Epstein-Barr virus: Adaptation to a life within the immune sytem. Trends Mkrobiol. 2, 125–130 (1994).
    Article CAS Google Scholar
  3. Rickinson, A.B. & Moss, D.J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu. Rev. Immunol. 15, 405–431 (1997).
    Article CAS Google Scholar
  4. Blake, N. et al. Human CD8(+) T Cell responses to EBV EBNA1-HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802 (1997).
    Article CAS Google Scholar
  5. Falk, K. et al. The role of repetitive DNA sequences in the size variation of Epstein-Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. J. Gen. Virol. 76, 779–790 (1995).
    Article CAS Google Scholar
  6. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr Virus nuclear antigen-1. Nature 375, 685–688 (1995).
    Article CAS Google Scholar
  7. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epsein-Barr-virus nuclear antigen 1. Proc. Natl. Acad. Sci USA 94, 12616–12621 (1997).
    Article CAS Google Scholar
  8. Goldberg, A.L., Akopian, T.N., Kisselev, A.F., Lee, D.H. & Rohrwild, M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol. Chem. 378, 131–140 (1997).
    CAS PubMed Google Scholar
  9. Berg, A.A. & Baldwin, A.S.J. The IκB proteins: multifunctional regulators of rel/NF-κB transcription factors. Genet Dev. 7, 2064–2070 (1993).
    Article Google Scholar
  10. Brown, K., Park, S., Kanno, T., Franzoso, G. & Siebenlist, U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc. Notl. Acad. Sci USA 90, 2532–2536 (1993).
    Article CAS Google Scholar
  11. Henkel, T. et al. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365, 182–185 (1993).
    Article CAS Google Scholar
  12. DiDonato, J.A., Mercurio, F. & Karin, M. Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol. Cell. Biol. 15, 1302–1311 (1995).
    Article CAS Google Scholar
  13. Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol. Cell. Biol. 15, 2166–2172 (1995).
    Article CAS Google Scholar
  14. Rise, N.R. & Ernst, M.K. In vivo control of NF-kappaB activation by IkappaBalpha. EMBO J. 12, 4685–4695 (1993).
    Article Google Scholar
  15. Krappmann, D., Wulczyn, F.G. & Scheidereit, C. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J. 15, 6716–6726 (1996).
    Article CAS Google Scholar
  16. Wang, C.Y., Mayo, M.W. & Baldwin, A.S.J. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 27A, 784–787 (1997).
    Google Scholar
  17. Beg, A.A. & Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-in-duced cell death. Science 274, 782–784 (1996).
    Article CAS Google Scholar
  18. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. & Verma, I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 27A, 787–789 (1996).
    Article Google Scholar
  19. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).
    Article CAS Google Scholar
  20. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488(1995).
    Article CAS Google Scholar
  21. Traenckner, E.B. et al. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBOJ. 14, 2876–2883 (1995).
    Article CAS Google Scholar
  22. Rodriguez, M.S. et al. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. Oncogene 12, 2425–2435 (1996).
    CAS PubMed Google Scholar
  23. Miyamoto, S., Maki, M., Schmitt, M.J., Hatanaka, M. & Verma, I.M. Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc. Natl. Acad. Sci USA 91, 12740–12744 (1994).
    Article CAS Google Scholar
  24. Lin, Y.C., Brown, K. & Siebenlist, U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci USA 92, 552–556 (1995).
    Article CAS Google Scholar
  25. Finco, T.S., Beg, A.A. & Baldwin, A.S.J. Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc. Natl. Acad. Sci USA 91, 11884–11888 (1994).
    Article CAS Google Scholar
  26. Alkalay, I. et al. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci USA 92, 10599–10603 (1995).
    Article CAS Google Scholar
  27. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994).
    Article CAS Google Scholar
  28. Yates, J.L., Camiolo, S.M., Ali, S. & Ying, A. Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology 222, 1–13 (1996).
    Article CAS Google Scholar
  29. Thiel, B.L., Guess, K.B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41, 703–719 (1997).
    Article CAS Google Scholar
  30. Simmons, A.H., Michal, C.A. & Jelinski, L.W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).
    Article CAS Google Scholar
  31. Williams, J., Williams, M., Liu, C. & Telling, G. Assessing the role of El A in the differential oncogenicity of group A and group C human adenoviruses. Curr. Top. Microbiol. Immunol. 199, 149–175 (1995).
    CAS PubMed Google Scholar
  32. Lin, L. & Ghosh, S. A glycin-rich region of NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).
    Article CAS Google Scholar
  33. Harrison, P.M., Bamborough, P., Daggett, V., Prusiner, S.B. & Cohen, F.E. The prion folding problem. Curr. Opin. Struct. Biol. 7, 53–59 (1997).
    Article CAS Google Scholar
  34. Baumeister, W. & Lupas, A. The proteasome. Curr. Opin. Struct. Biol. 7, 273–278 (1997).
    Article CAS Google Scholar
  35. Fisher, E.A. et al. The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J. Biol. Chem. 272, 20427–20434 (1997).
    Article CAS Google Scholar
  36. Lee, D.H., Sherman, M.Y. & Goldberg, A.L. Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4773–4781 (1996).
    Article CAS Google Scholar
  37. Bercovich, B. et al. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002–9010 (1997).
    Article CAS Google Scholar
  38. DiDonato, J. et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).
    Article CAS Google Scholar
  39. Hendil, K.B., Kristensen, P. & Uerkvitz, W. Human proteasomes analysed with monoclonal antibodies. Biochem. J. 305, 245–252 (1995).
    Article CAS Google Scholar
  40. Devary, Y., Rosette, C., DiDonato, J.A. & Karin, M. NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science 261, 1442–1445 (1993).
    Article CAS Google Scholar
  41. Dillner, J. et al. Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proc. Natl. Acad. Sci USA 81, 4652–4656 (1984).
    Article CAS Google Scholar

Download references