The aging of hematopoietic stem cells (original) (raw)

References

  1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).
    Article CAS Google Scholar
  2. Schneider, E.L. & Mitsui, Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73, 3584–3588 (1976).
    Article CAS Google Scholar
  3. Reincki, U., Hannon, E.C., Rosenblatt, M. & Hellman, S. Proliferative capacity of murine hematopoietic stem cells in vitro. Science 215, 1619–1622 (1982).
    Article Google Scholar
  4. Siminovitch, L., Till, J.E. & McCulloch, E.A. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell. Comp. Physiol. 64, 23–32 (1964).
    Article CAS Google Scholar
  5. Ogden, D.A. & Micklem, H.S. The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22, 287–293 (1976).
    Article CAS Google Scholar
  6. Harrison, D.E. Proliferative capacity of erythropoietic stem cell lines and aging: An overview. Mech. Ageing Dev. 9, 409–426 (1979).
    Article CAS Google Scholar
  7. Harrison, D.E. & Astle, C.M. Loss of stem cell repopulating ability upon transplantation: Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779 (1982).
    Article CAS Google Scholar
  8. Harrison, D.E., Astle, C.M. & Delaittre, J.A. Loss of proliferative capacity in immunohematopoietic stem cells caused by serial transplantation rather than aging. J. Exp. Med. 147, 1526–1531 (1978).
    Article CAS Google Scholar
  9. Harrison, D.E., Astle, C.M. & Lerner, C. Ultimate erythropoietic repopulating abilities of fetal, young adult, and old adult cells compared using repeated irradiation. J. Exp. Med. 160, 759–771 (1984).
    Article CAS Google Scholar
  10. Harrison, D.E. Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc. Natl. Acad. Sci. USA 70, 4184–3188 (1973).
    Article Google Scholar
  11. Harrison, D.E. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J. Exp. Med. 157, 1496–1504 (1983).
    Article CAS Google Scholar
  12. Chiu, C.-P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996).
    Article CAS Google Scholar
  13. Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860 (1994).
    Article CAS Google Scholar
  14. Harley, C.B. Telomere loss: Mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).
    Article CAS Google Scholar
  15. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).
    Article CAS Google Scholar
  16. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).
    Article CAS Google Scholar
  17. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: Evidence that Thy-l.1loLin-Sca-l+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).
    Article CAS Google Scholar
  18. Harrison, D.E. & Archer, J.R. Genetic differences in effects of food restriction on aging in mice. J. Nutr. 117, 376–382 (1987).
    Article CAS Google Scholar
  19. Morrison, S.J., Hemmati, H., Wandycz, A.M. & Weissman, I.L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92, 10302–10306 (1995).
    Article CAS Google Scholar
  20. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).
    Article CAS Google Scholar
  21. Heimfeld, S., Hudak, S., Weissman, I. & Rennick, D. The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc. Natl. Acad. Sci. USA 88, 9902–9906 (1991).
    Article CAS Google Scholar
  22. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C. & Ogawa, M. Enhancement of murine hematopoiesis by synergistic interactions between steel factor (ligand for c-kit), interleukin-11, and other early acting factors in culture. Blood 79, 2855–2860 (1992).
    CAS PubMed Google Scholar
  23. Nakahata, T. & Ogawa, M. Identification in culture of a class of hematopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc. Natl. Acad. Sci. USA 79, 3843–3847 (1982).
    Article CAS Google Scholar
  24. Cumano, A., Paige, C.J., Iscove, N.N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).
    Article CAS Google Scholar
  25. Muller-Sieburg, C., Whitlock, C.A. & Weissman, I.L. Isolation of two early B lymphocyte progenitors from mouse bone marrow: A committed pre-pre-B cell and a clonogenic Thy-1lo hematopoietic stem cell. Cell 44, 653–662 (1986).
    Article CAS Google Scholar
  26. Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G.V. & Wolf, N.S. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA 92, 9647–9651 (1995).
    Article CAS Google Scholar
  27. Peters, S.O., Kittler, E.L.W. Ramshaw, H.S. & Quesenberry, P.J. Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87, 30–37 (1996).
    CAS PubMed Google Scholar
  28. Spangrude, G.J., Brooks, D.M. & Tumas, D.B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: In vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1016 (1995)
    CAS PubMed Google Scholar
  29. Harrison, D.E., Astle, C.M. & Stone, M. Numbers and functions of trans-plantable primitive immunohematopoietic stem cells: Effect of age. J. Immunol. 142, 3833–3840 (1989).
    CAS PubMed Google Scholar
  30. Uchida, N., Aguila, H., Fleming, W.H., Jerabek, L. & Weissman, I.L. Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified hematopoietic stem cells. Blood 83, 3758–3779 (1994).
    CAS PubMed Google Scholar
  31. Sharp, A. et al. Age related changes in hemopoietic capacity of bone marrow cells. Mech. of Ageing and Development 48, 91–99 (1989).
    Article CAS Google Scholar
  32. Farrar, J.J., Loughman, B.E. & Nordin, A.A. Lymphopoietic potential of bone marrow cells from aged mice: Comparison of the cellular constituents of bone marrow from young and aged mice. J. Immunol. 112, 1244–1249 (1974).
    CAS PubMed Google Scholar
  33. Francus, T., Chen, Y.W., Staiano-Coico, L. & Hefton, J.M. Effect of age on the capacity of the bone marrow and the spleen cells to generate B lymphocytes. J. Immunol. 137, 2411–2417 (1986).
    CAS PubMed Google Scholar
  34. Rolink, A., Haasner, D., Nishikawa, S.-I. & Melchers, F. Changes in frequencies of clonable pre-B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300 (1993).
    CAS PubMed Google Scholar
  35. Smith, L.G., Weissman, I.L. & Heimfeld, S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 88, 2788–2792 (1991).
    Article CAS Google Scholar

Download references