Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein (original) (raw)
References
Hall, R.K. & Granner, D.K. Insulin regulates expression of metabolic genes through divergent signaling pathways. J. Basic Clin. Physiol. Pharmacol.10, 119–133 (1999). ArticleCAS Google Scholar
Gonzalez, G.A. & Montmimy, M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell59, 675–680 (1989). ArticleCAS Google Scholar
Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature365, 855–859 (1993). ArticleCAS Google Scholar
Kwok, R.P.S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature370, 223–229 (1994). ArticleCAS Google Scholar
Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature413, 179–183 (2001). ArticleCAS Google Scholar
Zanger, K., Radovick, S. & Wondisford, F.E. CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol. Cell7, 551–558 (2001). ArticleCAS Google Scholar
Yoon, J.C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature413, 131–138 (2001). ArticleCAS Google Scholar
Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature423, 550–555 (2003). ArticleCAS Google Scholar
Quinn, P.G. & Granner, D.K. Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP response element. Mol. Cell. Biol.10, 3357–3364 (1990). ArticleCAS Google Scholar
Liu, J.S., Park, E.A., Gurney, A.L., Roesler, W.J. & Hanson, R.W. Cyclic AMP induction of phosphoenolpyruvate carboxykinase gene transcription is mediated by multiple promoter elements. J. Biol. Chem.266, 19095–19102 (1991). CASPubMed Google Scholar
Jiang, G. & Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab.284, E671–E678 (2003). ArticleCAS Google Scholar
Fisher, S.J. & Kahn, C.R. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J. Clin. Invest.111, 463–468 (2003). ArticleCAS Google Scholar
Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germ line. Genes Dev.13, 1524–1528 (1999). ArticleCAS Google Scholar
Kido, Y. et al. Tissue-specific insulin resistance in mice with combined mutations of the insulin receptor, IRS-1 and IRS-2. J. Clin. Invest.105, 199–205 (2000). ArticleCAS Google Scholar
Crosson, S.M., Khan, A., Printen, J., Pessin, J.E. & Saltiel, A.R. PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J. Clin. Invest.111, 1423–32 (2003). ArticleCAS Google Scholar
Greenberg, C.C., Meredith, K.N., Yan, L. & Brady, M.J. Protein targeting to glycogen overexpression results in the specific enhancement of glycogen storage in 3T3-L1 adipocytes. J. Biol. Chem.278, 30835–30842 (2003). ArticleCAS Google Scholar
Tuttle, R.L. et al. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med.7, 1133–1137 (2001). ArticleCAS Google Scholar
Roe, M.W., Mertz, R.J., Lancaster, M.E, Worley, J.F. III & Dukes, I.D. Thapsigargin inhibits a glucose-induced decrease of intracellular Ca2+ concentration in mouse islets of Langerhans. Am. J. Physiol.266, E852–E862 (1994). CASPubMed Google Scholar
Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen-regulated transcription. Cell103, 843–852 (2000). ArticleCAS Google Scholar
Boileau, P. et al. Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1α-deficient mice: a mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes51, S343–348 (2002). ArticleCAS Google Scholar