Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein (original) (raw)

References

  1. Hall, R.K. & Granner, D.K. Insulin regulates expression of metabolic genes through divergent signaling pathways. J. Basic Clin. Physiol. Pharmacol. 10, 119–133 (1999).
    Article CAS Google Scholar
  2. Gonzalez, G.A. & Montmimy, M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680 (1989).
    Article CAS Google Scholar
  3. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).
    Article CAS Google Scholar
  4. Kwok, R.P.S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–229 (1994).
    Article CAS Google Scholar
  5. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 179–183 (2001).
    Article CAS Google Scholar
  6. Zanger, K., Radovick, S. & Wondisford, F.E. CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol. Cell 7, 551–558 (2001).
    Article CAS Google Scholar
  7. Yoon, J.C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).
    Article CAS Google Scholar
  8. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555 (2003).
    Article CAS Google Scholar
  9. Quinn, P.G. & Granner, D.K. Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP response element. Mol. Cell. Biol. 10, 3357–3364 (1990).
    Article CAS Google Scholar
  10. Liu, J.S., Park, E.A., Gurney, A.L., Roesler, W.J. & Hanson, R.W. Cyclic AMP induction of phosphoenolpyruvate carboxykinase gene transcription is mediated by multiple promoter elements. J. Biol. Chem. 266, 19095–19102 (1991).
    CAS PubMed Google Scholar
  11. Jiang, G. & Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 284, E671–E678 (2003).
    Article CAS Google Scholar
  12. Fisher, S.J. & Kahn, C.R. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J. Clin. Invest. 111, 463–468 (2003).
    Article CAS Google Scholar
  13. Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999).
    Article CAS Google Scholar
  14. Kido, Y. et al. Tissue-specific insulin resistance in mice with combined mutations of the insulin receptor, IRS-1 and IRS-2. J. Clin. Invest. 105, 199–205 (2000).
    Article CAS Google Scholar
  15. Crosson, S.M., Khan, A., Printen, J., Pessin, J.E. & Saltiel, A.R. PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J. Clin. Invest. 111, 1423–32 (2003).
    Article CAS Google Scholar
  16. Greenberg, C.C., Meredith, K.N., Yan, L. & Brady, M.J. Protein targeting to glycogen overexpression results in the specific enhancement of glycogen storage in 3T3-L1 adipocytes. J. Biol. Chem. 278, 30835–30842 (2003).
    Article CAS Google Scholar
  17. Tuttle, R.L. et al. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med. 7, 1133–1137 (2001).
    Article CAS Google Scholar
  18. Roe, M.W., Mertz, R.J., Lancaster, M.E, Worley, J.F. III & Dukes, I.D. Thapsigargin inhibits a glucose-induced decrease of intracellular Ca2+ concentration in mouse islets of Langerhans. Am. J. Physiol. 266, E852–E862 (1994).
    CAS PubMed Google Scholar
  19. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen-regulated transcription. Cell 103, 843–852 (2000).
    Article CAS Google Scholar
  20. Boileau, P. et al. Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1α-deficient mice: a mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes 51, S343–348 (2002).
    Article CAS Google Scholar

Download references