Individual development and uPA–receptor expression of disseminated tumour cells in bone marrow: A reference to early systemic disease in solid cancer (original) (raw)

References

  1. Brisco, M.J. et al. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 343, 196–199 (1994).
    Article CAS Google Scholar
  2. Yokota, S. et al. Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 77, 331–339 (1991).
    CAS PubMed Google Scholar
  3. Riethmueller, G. & Johnson, J. Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancer. Curr. Opin. Immun. 4, 647–655 (1992).
    Article Google Scholar
  4. Osborne, M.P. & Rosen, P.P. Detection and management of bone marrow micrometastases in breast cancer. Oncology 8, 25–31 (1994).
    CAS PubMed Google Scholar
  5. Moss, T.J. et al. Prognostic value of immunocytologic detection of bone marrow metastases in neuroblastoma. NewEngl. J. Med. 324, 219–226 (1991).
    Article CAS Google Scholar
  6. Lindemann, F., Schlimok, G., Dirschedl, P., Witte, J. & Riethmueller, G. Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients. Lancet 340, 685–689 (1992).
    Article CAS Google Scholar
  7. Schlimok, G. et al. Micrometastatic cancer cells in bone marrow: In vitro detection with anti-cytokeratin and in vivo labeling with anti-17-lA monoclonal antibodies. Proc. natn. Acad. Set. U.S.A. 84, 8672–8676 (1987).
    Article CAS Google Scholar
  8. Ghosh, A.K. et al. Detection of metastatic tumour cells in routine bone marrow smears by immunoalkaline phosphatase labelling with monoclonal antibodies. Brit J. Haematol. 61, 21–30 (1985).
    Article CAS Google Scholar
  9. Heiss, M.M. et al. Detection of cytokeratin-positive cells in bone marrow used as tumor marker in gastric cancer patients. in Tumor Associated Antigens, Oncogenes, Receptors, Cytokines in Tumor Diagnosis and Therapy at the Beginning of the Nineties, Cancer of the Breast — State and Trends in Diagnosis and Therapy (ed. Klapdor, R.) 471–473 (Zuckschwerdt, Munich, New York, 1992).
    Google Scholar
  10. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. natn. Cancer Inst. 85, 1419–1423 (1993).
    Article CAS Google Scholar
  11. Berger, U. et al. The relationship between micrometastasis in the bone marrow, histopathologic features of the primary tumor in breast cancer and prognosis. Am. J. clin. Pathol. 90, 1–6 (1988).
    Article CAS Google Scholar
  12. Cote, R.J., Rosen, P.P., Lesser, M.L., Old, L.J. & Osborne, M.P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J. clin. Oncol. 9, 1749–1756 (1991).
    Article CAS Google Scholar
  13. Riesenberg, R. et al. Immunocytochemical double staining of cytokeratin and prostate specific antigen in individual prostatic tumour cells. Histochemistry 99, 61–66 (1993).
    Article CAS Google Scholar
  14. Jauch, K.W., Gruetzner, U., Heiss, M.M., Funke, I. & Schildberg, F.W. Prognostic significance of early disseminated tumor cells in bone marrow of patients with gastric cancer, in First Intl. Gastric Cancer Congr., Kyoto, Japan Mar. 29–Apr. 1, 1995 (eds Nishi, M. et al.) 1021–1025 (Monduzzi Edi, Bologna, 1995).
  15. Mansi, J.L. et al The fate of bone marrow micrometastases in patients with primary breast cancer. J. clin. Oncol. 7, 445–449 (1989).
    Article CAS Google Scholar
  16. Fidler, I. & Kripke, M.L. Metastasis results from pre-existing variant cells within a malignant tumor. Science 197, 893–895 (1977).
    Article CAS Google Scholar
  17. Dvorak, H.F., Wounds that do not heal. New Engl. J. Med. 315, 1650–1659 (1986).
    Article CAS Google Scholar
  18. Duffy, M.J. The role of proteolytic enzymes in cancer invasion and metastasis. Clin. exp. Metastasis 10, 145–155 (1992).
    Article CAS Google Scholar
  19. Ossowski, L., Clunie, G., Masucci, M.T. & Blasi, F. In vivo paracrine interaction between urokinase and its receptor: Effect on tumor cell invasion. J. Cell Biol. 115, 1107–1112 (1991).
    Article CAS Google Scholar
  20. Blasi, F. Urokinase and urokinase receptor: A paracrine/autocrine system regulation cell migration and invasiveness. BioEssays 15, 105–111 (1993).
    Article CAS Google Scholar
  21. Heiss, M.M. et al. Tumor-associated proteolysis and prognosis: New functional risk factors in gastric cancer defined by the urokinase-type plasminogen activator system. J. clin. Oncol. 13, 2084–2093 (1995).
    Article CAS Google Scholar
  22. Nekarda, H. et al. Prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in completely resected gastric cancer. Cancer Res. 54, 2900–2907 (1994).
    CAS PubMed Google Scholar
  23. Duffy, M.J. et al. Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res. 50, 6827–6829 (1990).
    CAS PubMed Google Scholar
  24. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. The catalogue of human cytokeratins: Pattern of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).
    Article CAS Google Scholar
  25. Breimann, L., Friedmann, J.H., Ohlsen, R.A. & Sone, C.J. Classification and Regression Trees (Waelswoth, Belmont, California, 1984).
    Google Scholar
  26. Fazioli, F. & Blasi, F. Urokinase-type plasminogen activator and its receptor: New targets for anti-metastatic therapy. Trends Pharmac. Sci. 15, 25–29 (1994).
    Article CAS Google Scholar
  27. Paget, S. Distribution of secondary growths in cancer of the breast. Lancet 1, 571 (1889).
    Article Google Scholar
  28. Wong, K.F., Chan, J.K. & Ma, S.K. Solid tumor with initial presentation in the bone marrow: A clinicopathologic study of 25 adult cases. Hematol.-Oncol. 11, 35–42 (1993).
    Article CAS Google Scholar
  29. Frost, P., Raber, M.N. & Abbruzzese, J.L. Unknown primary tumors as a unique clinical and biological entity: A hypothesis. Cancer Bull. 41, 139–141 (1989).
    Google Scholar
  30. Cordell, J.L. et al. Immunoenzymatic labelling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal antialkaline phosphatase (APAAP complexes). J. Histochem. Cytochem. 32, 219–229 (1984).
    Article CAS Google Scholar
  31. Dixon, W.J. et al. BMDP Statistical Software (Univ. California Press, Los Angeles, 1985).
  32. Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observation. J. Am. stat. Assoc. 53, 457–481 (1958).
    Article Google Scholar
  33. Cox, D.R. Regression models and life tables. J. R. stat Soc. (B) 34, 187–220 (1972).
    Google Scholar

Download references