Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene (original) (raw)

References

  1. Creutzfeldt, W. & Ebert, R. New developments in the incretin concept today. Diabetologi 28, 565–573 (1985).
    Article CAS Google Scholar
  2. Mojsov, S., Weir, G.C. & Habener, J.F., Glucagon-like peptide I (7–37) co-encoded in the glucagon gene is potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619 (1987).
    Article CAS Google Scholar
  3. Kreymann, B., Ghatei, M.A., Williams, G. & Bloom, S.R. Glucagon-like peptide-1 7–36:A physiological incretin in man. Lancet ii, 1300–304 (1987).
    Article Google Scholar
  4. Holst, J.J., Orskov, C., Nielsen, O.V. & Schwartz, T.W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FERS Lett. 211, 169–174 (1987).
    CAS Google Scholar
  5. Fehmann, H.-C., Goke, R. & Goke, B. Cell and molecular biology of the incretin hormones glucagon-like peptide 1 and glucose-dependent releasing polypeptide. Endocrine Rev. 16, 390–410 (1995).
    Article CAS Google Scholar
  6. Turton, M.D. et al. role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).
    Article CAS Google Scholar
  7. Nauck, M.A. et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).
    Article CAS Google Scholar
  8. Nauck, M.A. et al> Normalization of fasting hyperglycaemi by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) dibetic patients. Diabetologi 36, 741–744 (1993).
    Article CAS Google Scholar
  9. Gutniak, M., Orskov, C., Holst, J.J.B. & Efendic, S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N. Engl.J. Med. 326, 1316–1322 (1992).
    Article CAS Google Scholar
  10. Dupre, J. et al> Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM. Diabetes 44, 626–630 (1995).
    Article CAS Google Scholar
  11. Thorens, B. Expression cloning of the pancreatic B cell receptor for the gluco-in-cretin hormone glucagon-like peptide 1. Proc. Natl. Acad. Sci. USA 89, 8641–8645 (1992).
    Article CAS Google Scholar
  12. Willms, B. et al> Gastric emptying, glucose responses, and insulin secretion after liquid test meal: Effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36)amide in type 2 (non-insulin-dependent) diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).
    CAS PubMed Google Scholar
  13. D' Alessio, D.A., Kahn, S.E., Leusner, C.R. & Ensinck, J.W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Invest. 93, 2263–2266 (1994).
    Article CAS Google Scholar
  14. D' Alessio, D.A., Prigeon, R.L. .& Ensinck, J.W. Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes — A physiological role of glucagon-like peptide I. Diabetes 44, 1433–1437 (1995).
    Article CAS Google Scholar
  15. Toft-Nielsen, M., Madsbad, S. & Holst, J.J. The effect of glucagon-like peptide 1 (GLP-1) on glucose elimination in healthy subjects depends on the pancreatic glucoregul tory hormones. Diabetes 45, 552–556 (1996).
    Article CAS Google Scholar
  16. Thorens, B. et al. Cloning and functional expression of the human islet GLP-1 receptor: Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 42, 1678–1682 (1993).
    Article CAS Google Scholar
  17. Gremlich, S. et al. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes 44, 1202–1208 (1995).
    Article CAS Google Scholar
  18. Drucker, D.J., Philippe, J., Mojsov, S., Chick, W.L. & Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 84, 3434–3438 (1987).
    Article CAS Google Scholar
  19. D' Alessio, D.A. et al. Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy ba boons. J. Clin. Invest. 97, 133–138 (1996).
    Article CAS Google Scholar
  20. Ritzel, R., Orskov, C., Holst, J.J. & Nauck, M.A., rmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36amide] after subcutaneous injection in he althy volunteers: Dose-response-relationships. Diabetologia 38, 720–725 (1995).
    Article CAS Google Scholar
  21. Hoosein, N.M. & Gurd, R.S. Human glucagon-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett. 178, 83–86 (1984).
    Article CAS Google Scholar
  22. Kanse, S.M., Kreymann, B., Ghatei, M.A. & Bloom, S.R. Identification and characterization of glucagon-like peptide-1 7–36amide-binding sites in the rat brain and lung. FEBS Lett. 241, 209–212 (1988).
    Article CAS Google Scholar
  23. Campos, R.V., Lee, Y.C. & Drucker, D.J. Divergent tissue-specific and development al expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).
    Article CAS Google Scholar
  24. Wei, Y. & Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide 1: Brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 358, 219–224 (1995).
    Article CAS Google Scholar
  25. Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).
    Article CAS Google Scholar
  26. Egan, J.M. Montrose-Rafizadeh, C., Wang, Y., Bernier, M. & Roth, J. Glucagon-like peptide-1(7–36)amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: One of several potential extrapancreatic sites of GLP-1 action. Endocrinology 135, 2070–2075 (1994).
    Article CAS Google Scholar
  27. Villanuev -Penacarrillo, M. L., Alcántar, A.I., Clemente, F., Delgado, E. & Valverde, I. Potent glycogenic effect of GLP-1 (7–36)amide in rat skeletal muscle. Diabetologi 37, 1163–1166 (1994).
    Article Google Scholar
  28. Hvidberg Nielsen, M.T., Hilsted, J., Orskov, C. & Holst, J.J. Effect of glucagon-like peptide-1 (proglucgon 78–107amide) on hepatic glucose production in healthy man. Metabolism 43, 104–108 (1994).
    Article Google Scholar
  29. Wheeler, M.B. et al. Functional expression of the rat glucagon-like peptide-I receptor: Evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133, 57–62 (1993).
    Article CAS Google Scholar
  30. Tybulewicz, V.L.J., Crawfor, C.E. Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-_abl_proto-oncogene. Cell 65, 1153–1163 (1991).
    Article CAS Google Scholar
  31. Nagy Rossant, J., Nagy, R.W. & Roder, J.C. Derivation of completely cell culture-derived mice from early passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).
    Article Google Scholar
  32. Nagy, A. & Rossant, J. Production of completely ES cell-derived fetuses. in Gene Ta rgeting: Practic lapproach, (ed. Joyner, A.L.) 147–178 (Oxford Univ. Press, Oxford, 1993).
    Google Scholar
  33. Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones. in Gene Targeting: Practical Approach, (ed. Joyner, A.L.) 33–61 (Oxford Univ. Press, Oxford, 1993).
    Google Scholar
  34. Brubaker, P.L., Lee, Y.C. & Drucker, D.J. Alterations in proglucagon processing and inhibition of proglucagon gene expression in glucagon-SV40 T antigen transgenic mice. J. Biol. Chem. 267, 20728–20733 (1992).
    CAS PubMed Google Scholar
  35. Akesson, T.R., Mantyh, P.W., Mantyh, C.R., Matt, D.W. & Micevych, P.E. Estrous cyclicity of 125I-cholecystokinin octapeptide binding in the ventromedial hypothalamic nucleus. Evidence for downmodulation by estrogen. Neuroendocrinology 45, 257–262 (1987).
    Article CAS Google Scholar
  36. Heinrichs, S.C. et al. Endogenous corticotropin releasing factor modulates feeding induced by neuropeptide Y or a tail-pinch stressor. Peptides 13, 879–884 (1992).
    Article CAS Google Scholar

Download references