HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress (original) (raw)

References

  1. Wills, J.W. et al. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J. Virol. 68, 6605–6618 (1994).
    CAS PubMed PubMed Central Google Scholar
  2. Xiang, Y., Cameron, C.E., Wills, J.W. & Leis, J. Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J. Virol. 70, 5695–5700 (1996).
    CAS PubMed PubMed Central Google Scholar
  3. Yasuda, J. & Hunter, E. A proline-rich motif (_P_Y) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J. Virol. 72, 4095–4103 (1998).
    CAS PubMed PubMed Central Google Scholar
  4. Yuan, B., Campbell, S., Bacharach, E., Rein, A. & Goff, S.P. Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J. Virol. 74, 7250–7260 (2000).
    Article CAS Google Scholar
  5. Puffer, B.A., Parent, L.J., Wills, J.W. & Montelaro, R.C. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71, 6541–6546 (1997).
    CAS PubMed PubMed Central Google Scholar
  6. Gottlinger, H.G., Dorfman, T., Sodroski, J.G. & Haseltine, W.A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 88, 3195–3199 (1991).
    Article CAS Google Scholar
  7. Parent, L.J. et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J. Virol. 69, 5455–5460 (1995).
    CAS PubMed PubMed Central Google Scholar
  8. Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818 (1995).
    CAS PubMed PubMed Central Google Scholar
  9. Strack, B., Calistri, A., Accola, M.A., Palu, G. & Gottlinger, H.G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA 97, 13063–13068 (2000).
    Article CAS Google Scholar
  10. Puffer, B.A., Watkins, S.C. & Montelaro, R.C. Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly. J. Virol. 72, 10218–10221 (1998).
    CAS PubMed PubMed Central Google Scholar
  11. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).
    Article CAS Google Scholar
  12. Kikonyogo, A. et al. Proteins related to the Nedd4 family of ubiquitin protein ligases intereact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc. Natl. Acad. Sci. USA 98, 11199–11204 (2001).
    Article CAS Google Scholar
  13. Babst, M., Odorizzi, G., Estepa, E.J. & Emr, S.D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).
    Article CAS Google Scholar
  14. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001).
    Article CAS Google Scholar
  15. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).
    Article CAS Google Scholar
  16. Harty, R.N., Brown, M.E., Wang, G., Huibregtse, J. & Hayes, F.P. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl. Acad. Sci. USA 97, 13871–13876 (2000).
    Article CAS Google Scholar
  17. Harty, R.N., Paragas, J., Sudol, M. & Palese, P. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J. Virol. 73, 2921–2929 (1999).
    CAS PubMed PubMed Central Google Scholar
  18. Craven, R.C., Harty, R.N., Paragas, J., Palese, P. & Wills, J.W. Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus–retrovirus chimeras. J. Virol. 73, 3359–3365 (1999).
    CAS PubMed PubMed Central Google Scholar
  19. Timmins, J., Scianimanico, S., Schoehn, G. & Weissenhorn, W. Vesicular release of ebola virus matrix protein VP40. Virology 283, 1–6 (2001).
    Article CAS Google Scholar
  20. Jasenosky, L.D., Neumann, G., Lukashevich, I. & Kawaoka, Y. Ebola virus VP40-induced particle formation and association with the lipid bilayer. J. Virol. 75, 5205–5214 (2001).
    Article CAS Google Scholar
  21. Lee, P.P. & Linial, M.L. Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal. J. Virol. 68, 6644–6654 (1994).
    CAS PubMed PubMed Central Google Scholar
  22. Reil, H., Bukovsky, A.A., Gelderblom, H.R. & Gottlinger, H.G. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J. 17, 2699–2708 (1998).
    Article CAS Google Scholar
  23. Luban, J., Alin, K.B., Bossolt, K.L., Humaran, T. & Goff, S.P. Genetic assay for multimerization of retroviral gag polyproteins. J. Virol. 66, 5157–5160 (1992).
    CAS PubMed PubMed Central Google Scholar
  24. Yuan, X., Yu, X., Lee, T.H. & Essex, M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J. Virol. 67, 6387–6394 (1993).
    CAS PubMed PubMed Central Google Scholar
  25. Tritel, M. & Resh, M.D. Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J. Virol, 74, 5845–5855 (2000).
    Article CAS Google Scholar
  26. Schubert, U. et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl. Acad. Sci. USA 97, 13057–13062 (2000).
    Article CAS Google Scholar
  27. Patnaik, A., Chau, V. & Wills, J.W. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl. Acad. Sci. USA 97, 13069–13074 (2000).
    Article CAS Google Scholar
  28. Bieniasz, P.D. & Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 74, 9868–9877 (2000).
    Article CAS Google Scholar
  29. Bogerd, H.P., Fridell, R.A., Blair, W.S. & Cullen, B.R. Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J. Virol. 67, 5030–5034 (1993).
    CAS PubMed PubMed Central Google Scholar
  30. Bieniasz, P.D., Grdina, T.A., Bogerd, H.P. & Cullen, B.R. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J. 17, 7056–7065 (1998).
    Article CAS Google Scholar
  31. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).
    Article CAS Google Scholar

Download references