HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress (original) (raw)
References
Wills, J.W. et al. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J. Virol.68, 6605–6618 (1994). CASPubMedPubMed Central Google Scholar
Xiang, Y., Cameron, C.E., Wills, J.W. & Leis, J. Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J. Virol.70, 5695–5700 (1996). CASPubMedPubMed Central Google Scholar
Yasuda, J. & Hunter, E. A proline-rich motif (_P_Y) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J. Virol.72, 4095–4103 (1998). CASPubMedPubMed Central Google Scholar
Yuan, B., Campbell, S., Bacharach, E., Rein, A. & Goff, S.P. Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J. Virol.74, 7250–7260 (2000). ArticleCAS Google Scholar
Puffer, B.A., Parent, L.J., Wills, J.W. & Montelaro, R.C. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol.71, 6541–6546 (1997). CASPubMedPubMed Central Google Scholar
Gottlinger, H.G., Dorfman, T., Sodroski, J.G. & Haseltine, W.A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA88, 3195–3199 (1991). ArticleCAS Google Scholar
Parent, L.J. et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J. Virol.69, 5455–5460 (1995). CASPubMedPubMed Central Google Scholar
Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol.69, 6810–6818 (1995). CASPubMedPubMed Central Google Scholar
Strack, B., Calistri, A., Accola, M.A., Palu, G. & Gottlinger, H.G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA97, 13063–13068 (2000). ArticleCAS Google Scholar
Puffer, B.A., Watkins, S.C. & Montelaro, R.C. Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly. J. Virol.72, 10218–10221 (1998). CASPubMedPubMed Central Google Scholar
VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA98, 7724–7729 (2001). ArticleCAS Google Scholar
Kikonyogo, A. et al. Proteins related to the Nedd4 family of ubiquitin protein ligases intereact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc. Natl. Acad. Sci. USA98, 11199–11204 (2001). ArticleCAS Google Scholar
Babst, M., Odorizzi, G., Estepa, E.J. & Emr, S.D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic1, 248–258 (2000). ArticleCAS Google Scholar
Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem.276, 11735–11742 (2001). ArticleCAS Google Scholar
Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106, 145–155 (2001). ArticleCAS Google Scholar
Harty, R.N., Brown, M.E., Wang, G., Huibregtse, J. & Hayes, F.P. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl. Acad. Sci. USA97, 13871–13876 (2000). ArticleCAS Google Scholar
Harty, R.N., Paragas, J., Sudol, M. & Palese, P. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J. Virol.73, 2921–2929 (1999). CASPubMedPubMed Central Google Scholar
Craven, R.C., Harty, R.N., Paragas, J., Palese, P. & Wills, J.W. Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus–retrovirus chimeras. J. Virol.73, 3359–3365 (1999). CASPubMedPubMed Central Google Scholar
Timmins, J., Scianimanico, S., Schoehn, G. & Weissenhorn, W. Vesicular release of ebola virus matrix protein VP40. Virology283, 1–6 (2001). ArticleCAS Google Scholar
Jasenosky, L.D., Neumann, G., Lukashevich, I. & Kawaoka, Y. Ebola virus VP40-induced particle formation and association with the lipid bilayer. J. Virol.75, 5205–5214 (2001). ArticleCAS Google Scholar
Lee, P.P. & Linial, M.L. Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal. J. Virol.68, 6644–6654 (1994). CASPubMedPubMed Central Google Scholar
Reil, H., Bukovsky, A.A., Gelderblom, H.R. & Gottlinger, H.G. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J.17, 2699–2708 (1998). ArticleCAS Google Scholar
Luban, J., Alin, K.B., Bossolt, K.L., Humaran, T. & Goff, S.P. Genetic assay for multimerization of retroviral gag polyproteins. J. Virol.66, 5157–5160 (1992). CASPubMedPubMed Central Google Scholar
Yuan, X., Yu, X., Lee, T.H. & Essex, M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J. Virol.67, 6387–6394 (1993). CASPubMedPubMed Central Google Scholar
Tritel, M. & Resh, M.D. Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J. Virol,74, 5845–5855 (2000). ArticleCAS Google Scholar
Schubert, U. et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl. Acad. Sci. USA97, 13057–13062 (2000). ArticleCAS Google Scholar
Patnaik, A., Chau, V. & Wills, J.W. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl. Acad. Sci. USA97, 13069–13074 (2000). ArticleCAS Google Scholar
Bieniasz, P.D. & Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol.74, 9868–9877 (2000). ArticleCAS Google Scholar
Bogerd, H.P., Fridell, R.A., Blair, W.S. & Cullen, B.R. Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J. Virol.67, 5030–5034 (1993). CASPubMedPubMed Central Google Scholar
Bieniasz, P.D., Grdina, T.A., Bogerd, H.P. & Cullen, B.R. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J.17, 7056–7065 (1998). ArticleCAS Google Scholar
Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell107, 55–65 (2001). ArticleCAS Google Scholar