Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease (original) (raw)
Theofilopoulos, A.N. & Dixon, F.J. Etiopathogenesis of murine SLE. Immunol. Rev.55, 179–216 (1981). ArticleCASPubMed Google Scholar
Cohen, P.L. & Eisenberg, R.A. Lpr and gld: Single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol.9, 243–269 (1991). ArticleCASPubMed Google Scholar
Wofsy, D., Hardy, R.R. & Seaman, W.E. The proliferating cells in autoimmune MRL/lpr mice lack L3T4, an antigen on “helper” T cells that is involved in the response to class II major histocompatibility antigens. J. Immunol.132, 2686–2689 (1984). CASPubMed Google Scholar
Morse, H.C. 3rd et al. Abnormalities induced by the mutant gene Ipr: Expansion of a unique lymphocyte subset. J. Immunol.129, 2612–2615 (1982). PubMed Google Scholar
Andrews, B.S. et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J. Exp. Med.148, 1198–1215 (1978). ArticleCASPubMed Google Scholar
Kaliyaperumal, A., Michaels, M.A. & Datta, S.K. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: Tolerance spreading impairs pathogenic function of autoimmune T and B cells. J. Immunol.162, 5775–5783 (1999). CASPubMed Google Scholar
Wofsy, D. Treatment of murine lupus with anti-CD4 monoclonal antibodies. Immunol. Ser.59, 221–236 (1993). CASPubMed Google Scholar
Mohan, C., Shi, Y., Laman, J.D. & Datta, S.K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol.154, 1470–80 (1995). CASPubMed Google Scholar
Finck, B.K., Linsley, P.S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science265, 1225–1227 (1994). ArticleCASPubMed Google Scholar
Kalled, S.L., Cutler, A.H., Datta, S.K. & Thomas, D.W. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: Preservation of kidney function. J. Immunol.160, 2158–2165 (1998). CASPubMed Google Scholar
Liang, B., Kashgarian, M.J., Sharpe, A.H. & Mamula, M.J. Autoantibody responses and pathology regulated by B7-1 and B7-2 costimulation in MRL/lpr lupus. J. Immunol.165, 3436–3443 (2000). ArticleCASPubMed Google Scholar
Theofilopoulos, A.N. & Lawson, B.R. Tumour necrosis factor and other cytokines in murine lupus. Ann. Rheum. Dis.58 Suppl. 1, I49–55 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kelley, V.R. & Wuthrich, R.P. Cytokines in the pathogenesis of systemic lupus erythematosus. Semin. Nephrol.19, 57–66 (1999). CASPubMed Google Scholar
Vinay, D.S. & Kwon, B.S. Role of 4-1BB in immune responses. Semin. Immunol.10, 481–489 (1998). ArticleCASPubMed Google Scholar
Kwon, B., Moon, C.H., Kang, S., Seo, S.K. & Kwon, B.S. 4-1BB: Still in the midst of darkness. Mol. Cells10, 119–126 (2000). ArticleCASPubMed Google Scholar
Pollok, K.E. et al. Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol.150, 771–781 (1993). CASPubMed Google Scholar
Melero, I., Johnston, J.V., Shufford, W.W., Mittler, R.S. & Chen, L. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol.190, 167–172 (1998). ArticleCASPubMed Google Scholar
Goodwin, R.G. et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol.23, 2631–2641 (1993). ArticleCASPubMed Google Scholar
Pollok, K.E. et al. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells. Eur. J. Immunol.24, 367–374 (1994). ArticleCASPubMed Google Scholar
Alderson, M.R. et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur. J. Immunol.24, 2219–2227 (1994). ArticleCASPubMed Google Scholar
Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med.3, 682–685 (1997). ArticleCASPubMed Google Scholar
Shuford, W.W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med.186, 47–55 (1997). ArticleCASPubMedPubMed Central Google Scholar
Blazar, B.R. et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft- versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J. Immunol.166, 3174–3183 (2001). ArticleCASPubMed Google Scholar
Wilcox, R. et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest.109, 651–659 (2002). ArticleCASPubMedPubMed Central Google Scholar
Halstead, E.S., Mueller, Y.M., Altman, J.D. & Katsikis, P.D. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nature Immunol.3, 536–541 (2002). ArticleCAS Google Scholar
Mittler, R.S., Bailey, T.S., Klussman, K., Trailsmith, M.D. & Hoffmann, M.K. Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J. Exp. Med.190, 1535–1540 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sun, Y. et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J. Immunol.168, 1457–1465 (2002). ArticleCASPubMed Google Scholar
Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl. Acad. Sci. USA90, 1756–1760 (1993). ArticleCASPubMedPubMed Central Google Scholar
Suda, T. & Nagata, S. Why do defects in the Fas-Fas ligand system cause autoimmunity? J. Allergy Clin. Immunol.100, S97–101 (1997). ArticleCASPubMed Google Scholar
Hildeman, D.A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity10, 735–744 (1999). ArticleCASPubMed Google Scholar
Ding, A.H., Nathan, C.F. & Stuehr, D.J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol.141, 2407–2412 (1988). CASPubMed Google Scholar
Williams, M.S., Noguchi, S., Henkart, P.A. & Osawa, Y. Nitric oxide synthase plays a signaling role in TCR-triggered apoptotic death. J. Immunol.161, 6526–6531 (1998). CASPubMed Google Scholar
Haendeler, J., Zeiher, A.M. & Dimmeler, S. Nitric oxide and apoptosis. Vitam. Horm.57, 49–77 (1999). ArticleCASPubMed Google Scholar
Passwell, J., Schreiner, G.F., Nonaka, M., Beuscher, H.U. & Colten, H.R. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J. Clin. Invest.82, 1676–1684 (1988). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, R.W. T cells in the pathogenesis of systemic lupus erythematosus. Front Biosci.6, D1369–1378 (2001). ArticleCASPubMed Google Scholar
Jacobson, B.A., Rothstein, T.L. & Marshak-Rothstein, A. Unique site of IgG2a and rheumatoid factor production in MRL/lpr mice. Immunol. Rev.156, 103–110 (1997). ArticleCASPubMed Google Scholar
Balomenos, D., Rumold, R. & Theofilopoulos, A.N. Interferon-γ is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J. Clin. Invest.101, 364–371 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haas, C., Ryffel, B. & Le Hir, M. IFN-γ is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J. Immunol.158, 5484–5491 (1997). CASPubMed Google Scholar
Schwarting, A., Wada, T., Kinoshita, K., Tesch, G. & Kelley, V.R. IFN-γ receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL- Fas(lpr) mice. J. Immunol.161, 494–503 (1998). CASPubMed Google Scholar
Nicoletti, F. et al. Dichotomic effects of IFN-γ on the development of systemic lupus erythematosus-like syndrome in MRL-lpr/lpr mice. Eur. J. Immunol.30, 438–447 (2000). ArticleCASPubMed Google Scholar