Apolipoprotein M is required for preβ-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis (original) (raw)

References

  1. Silver, D.L., Jiang, X.C., Arai, T., Bruce, C. & Tall, A.R. Receptors and lipid transfer proteins in HDL metabolism. Ann. NY Acad. Sci. 902, 103–111 (2000).
    Article CAS Google Scholar
  2. Stein, O. & Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 144, 285–301 (1999).
    Article CAS Google Scholar
  3. Assmann, G. & Nofer, J.R. Atheroprotective effects of high-density lipoproteins. Annu. Rev. Med. 54, 321–341 (2003).
    Article CAS Google Scholar
  4. Fielding, C.J. & Fielding, P.E. Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).
    Article CAS Google Scholar
  5. Phillips, M.C. et al. Mechanisms of high density lipoprotein-mediated efflux of cholesterol from cell plasma membranes. Atherosclerosis 137, S13–S17 (1998).
    Article CAS Google Scholar
  6. Santamarina-Fojo, S., Lambert, G., Hoeg, J.M. & Brewer, H.B., Jr. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 11, 267–275 (2000).
    Article CAS Google Scholar
  7. Francone, O.L., Gong, E.L., Ng, D.S., Fielding, C.J. & Rubin, E.M. Expression of human lecithin-cholesterol acyltransferase in transgenic mice. Effect of human apolipoprotein AI and human apolipoprotein AII on plasma lipoprotein cholesterol metabolism. J. Clin. Invest. 96, 1440–1448 (1995).
    Article CAS Google Scholar
  8. Sparks, D.L. & Pritchard, P.H. Transfer of cholesteryl ester into high density lipoprotein by cholesteryl ester transfer protein: effect of HDL lipid and apoprotein content. J. Lipid Res. 30, 1491–1498 (1989).
    CAS PubMed Google Scholar
  9. Shih, D.Q. et al. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 27, 375–382 (2001).
    Article CAS Google Scholar
  10. Xu, N. & Dahlback, B. A novel human apolipoprotein (apoM). J. Biol. Chem. 274, 31286–31290 (1999).
    Article CAS Google Scholar
  11. Law, S.W. et al. The molecular biology of human apoA-I, apoA-II, apoC-II and apoB. Adv. Exp. Med. Biol. 201, 151–162 (1986).
    CAS PubMed Google Scholar
  12. Ashavaid, T.F., Todur, S.P. & Nair, K.G. Apolipoprotein E polymorphism and coronary heart disease. J. Assoc. Physicians India 51, 784–788 (2003).
    CAS PubMed Google Scholar
  13. McFarlane, A.S. Efficient trace-labelling of proteins with iodine. Nature 182, 53 (1958).
    Article CAS Google Scholar
  14. Pittman, R.C. et al. A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem. J. 212, 791–800 (1983).
    Article CAS Google Scholar
  15. Rye, K.A. et al. Evidence that phospholipids play a key role in pre-beta apoA-I formation and high-density lipoprotein remodeling. Biochemistry 41, 12538–12545 (2002).
    Article CAS Google Scholar
  16. Schwartz, K., Lawn, R.M. & Wade, D.P. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem. Biophys. Res. Commun. 274, 794–802 (2000).
    Article CAS Google Scholar
  17. Puchois, P. et al. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis 68, 35–40 (1987).
    Article CAS Google Scholar
  18. Plump, A.S., Scott, C.J. & Breslow, J.L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA 91, 9607–9611 (1994).
    Article CAS Google Scholar
  19. Teupser, D., Persky, A.D. & Breslow, J.L. Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscler. Thromb. Vasc. Biol. 23, 1907–1913 (2003).
    Article CAS Google Scholar
  20. Silver, D.L., Wang, N., Xiao, X. & Tall, A.R. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J. Biol. Chem. 276, 25287–25293 (2001).
    Article CAS Google Scholar
  21. Castro, G.R. & Fielding, C.J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry 27, 25–29 (1988).
    Article CAS Google Scholar
  22. Barbaras, R., Puchois, P., Fruchart, J.C. & Ailhaud, G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem. Biophys. Res. Commun. 142, 63–69 (1987).
    Article CAS Google Scholar
  23. Richter, S. et al. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52, 2989–2995 (2003).
    Article CAS Google Scholar
  24. Isomaa, B. et al. Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia 41, 467–473 (1998).
    Article CAS Google Scholar
  25. Zhang, G., Budker, V. & Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10, 1735–1737 (1999).
    Article CAS Google Scholar
  26. O'Connor, P.M. et al. Measurement of prebeta-1 HDL in human plasma by an ultrafiltration-isotope dilution technique. Anal. Biochem. 251, 234–240 (1997).
    Article CAS Google Scholar
  27. Paigen, B., Morrow, A., Holmes, P.A., Mitchell, D. & Williams, R.A. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240 (1987).
    Article CAS Google Scholar

Download references