- Schwartz, A.L. & Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74 (1999).
Article CAS Google Scholar
- Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
Article CAS Google Scholar
- Liu, Z., Diaz, L.A., Haas, A.L. & Giudice, G.J. cDNA cloning of a novel human ubiquitin carrier protein. An antigenic domain specifically recognized by endemic pemphigus foliaceus autoantibodies is encoded in a secondary reading frame of this human epidermal transcript. J. Biol. Chem. 267, 15829–15835 (1992).
CAS PubMed Google Scholar
- Liu, Z., Haas, A.L., Diaz, L.A., Conrad, C.A. & Giudice, G.J. Characterization of a novel keratinocyte ubiquitin carrier protein. J. Biol. Chem. 271, 2817–2822 (1996).
Article CAS Google Scholar
- Baboshina, O.V. & Haas, A.L. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J. Biol. Chem. 271, 2823–2831 (1996).
Article CAS Google Scholar
- Welsh, J.B. et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 98, 1176–1181 (2001).
Article CAS Google Scholar
- Wagner, K.W. et al. Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23, 6621–6629 (2004).
Article CAS Google Scholar
- Kaelin, W.G., Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).
Article CAS Google Scholar
- Cockman, M. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).
Article CAS Google Scholar
- Iwai, K. et al. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA 96, 12436–12441 (1999).
Article CAS Google Scholar
- Ohh, M. et al. Ubiquitination of HIF requires direct binding to the von Hippel-Lindau protein β-domain. Nat. Cell Biol. 2, 423–427 (2000).
Article CAS Google Scholar
- Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).
Article CAS Google Scholar
- Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).
Article CAS Google Scholar
- Semenza, G.L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345–350 (2001).
Article CAS Google Scholar
- Pugh, C.W. & Ratcliffe, P.I. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).
Article CAS Google Scholar
- Haase, V.H., Glickman, J.N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc. Natl. Acad. Sci. USA 98, 1583–1588 (2001).
Article CAS Google Scholar
- Los, M. et al. Expression pattern of the von Hippel-Lindau protein in human tissues. Lab. Invest. 75, 231–238 (1996).
CAS PubMed Google Scholar
- Schoenfeld, A.R., Davidowitz, E.J. & Burk, R.D. Elongin BC complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. Proc. Natl. Acad. Sci. USA 97, 8507–8512 (2000).
Article CAS Google Scholar
- Feldman, D.E., Thulasiraman, V., Ferreyra, R.G. & Frydman, J. Formation of the VHL–Elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol. Cell 4, 1051–1061 (1999).
Article CAS Google Scholar
- Kamura, T., Brower, C.S., Conaway, R.C. & Conaway, J.W. A molecular basis for stabilization of the von Hippel-Lindau (VHL) tumor suppressor protein by components of the VHL ubiquitin ligase. J. Biol. Chem. 277, 30388–30393 (2002).
Article CAS Google Scholar
- Cho, W.K. et al. Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumors. Mol. Ther. 10, 938–949 (2004).
Article CAS Google Scholar
- Wu, P.Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).
Article CAS Google Scholar
- Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).
Article CAS Google Scholar
- De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).
Article CAS Google Scholar
- Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H. & Weissman, A.M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).
Article CAS Google Scholar
- Saville, M.K. et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 279, 42169–42181 (2004).
Article CAS Google Scholar
- Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J. & Harper, J.W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).
Article CAS Google Scholar
- Hockel, M. & Vaupel, P. Tumor hypoxia: Definition and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93, 266–276 (2001).
Article CAS Google Scholar
- Zhong, H. et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastasis. Cancer Res. 59, 5830–5835 (1999).
CAS Google Scholar
- Zhong, H., Mabjeesh, N.J., Willard, M.T. & Simons, J.W. Nuclear expression of hypoxia-inducible factor 1α protein is heterogeneous in human malignant cells under normoxic conditions. Cancer Lett. 181, 233–238 (2002).
Article CAS Google Scholar
- Bilton, R.L. & Booker, G.W. The subtle side to hypoxia inducible factor (HIFα) regulation. Eur. J. Biochem. 270, 791–798 (2003).
Article CAS Google Scholar
- Lee, J.H. et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731–1737 (1996).
Article CAS Google Scholar
- Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W.G., Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1, 822–826 (1995).
Article CAS Google Scholar
- Kondo, K., Kim, W.Y., Lechpammar, M. & Kaelin, W.G., Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).
Article Google Scholar
- Kondo, K., Kico, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G., Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).
Article CAS Google Scholar
- Maranchie, J. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).
Article CAS Google Scholar
- Baba, M. et al. Tumor suppressor protein VHL is induced at high cell density and mediates contact inhibition of cell growth. Oncogene 20, 2727–2736 (2001).
Article CAS Google Scholar
- Mack, F.A. et al. Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 3, 75–88 (2003).
Article CAS Google Scholar
- Koshiji, M. et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23, 1949–1956 (2004).
Article CAS Google Scholar
- Mack, F.A., Patel, J.H., Biju, M.P., Hasse, V.H. & Simon, M.C. Decreased growth of Vhl −/− fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mol. Cell. Biol. 25, 4565–4578 (2005).
Article CAS Google Scholar
- Ryan, H.E., Lo, J. & Johnson, R.S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).
Article CAS Google Scholar
- Ryan, H.E. et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000).
CAS PubMed Google Scholar
- Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).
Article CAS Google Scholar
- Acker, T. et al. Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell 8, 131–141 (2005).
Article CAS Google Scholar
- Jung, C.R. et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 43, 1042–1052 (2006).
Article CAS Google Scholar
- Rho, J., Choi, S., Seong, Y.R., Choi, J. & Im, D.S. The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J. Virol. 75, 8031–8044 (2001).
Article CAS Google Scholar
- Rho, J. et. al. PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276, 11393–13401 (2001).
Article CAS Google Scholar
- Sakyo, T. & Kitagawa, T. Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains. Biochim. Biophys. Acta 1567, 165–175 (2002).
Article CAS Google Scholar
- Lee, D.H. et al. Macrophage inhibitory cytokine-1 induces the invasiveness of gastric cancer cells by up-regulating the urokinase-type plasminogen activator system. Cancer Res. 63, 4648–4655 (2003).
CAS PubMed Google Scholar