- Saltiel, A.R. & Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).
Article CAS Google Scholar
- DeFronzo, R.A., Bonadonna, R.C. & Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318–368 (1992).
Article CAS Google Scholar
- Saltiel, A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517–529 (2001).
Article CAS Google Scholar
- Trinh, K.Y., O'Doherty, R.M., Anderson, P., Lange, A.J. & Newgard, C.B. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J. Biol. Chem. 273, 31615–31620 (1998).
Article CAS Google Scholar
- Valera, A., Pujol, A., Pelegrin, M. & Bosch, F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 91, 9151–9154 (1994).
Article CAS Google Scholar
- Pilkis, S.J. & Granner, D.K. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54, 885–909 (1992).
Article CAS Google Scholar
- Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822 (1997).
Article CAS Google Scholar
- Montminy, M., Koo, S.H. & Zhang, X. The CREB family: key regulators of hepatic metabolism. Ann. Endocrinol. (Paris) 65, 73–75 (2004).
Article CAS Google Scholar
- Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001).
Article CAS Google Scholar
- Yoon, J.C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).
Article CAS Google Scholar
- Koo, S.H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).
Article CAS Google Scholar
- Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135 (2004).
Article CAS Google Scholar
- Zhang, L., Rubins, N.E., Ahima, R.S., Greenbaum, L.E. & Kaestner, K.H. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2, 141–148 (2005).
Article Google Scholar
- Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555 (2003).
Article CAS Google Scholar
- Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).
Article CAS Google Scholar
- Baker, K.D. et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 113, 731–742 (2003).
Article CAS Google Scholar
- Philips, A. et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol. Cell. Biol. 17, 5946–5951 (1997).
Article CAS Google Scholar
- Wilson, T.E., Fahrner, T.J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).
Article CAS Google Scholar
- Winoto, A. & Littman, D.R. Nuclear hormone receptors in T lymphocytes. Cell 109, Suppl, S57–S66 (2002).
Article CAS Google Scholar
- Pei, L., Castrillo, A., Chen, M., Hoffmann, A. & Tontonoz, P. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J. Biol. Chem. 280, 29256–29262 (2005).
Article CAS Google Scholar
- Milbrandt, J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1, 183–188 (1988).
Article CAS Google Scholar
- Woronicz, J.D., Calnan, B., Ngo, V. & Winoto, A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367, 277–281 (1994).
Article CAS Google Scholar
- Liu, Z.G., Smith, S.W., McLaughlin, K.A., Schwartz, L.M. & Osborne, B.A. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367, 281–284 (1994).
Article CAS Google Scholar
- Zetterstrom, R.H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).
Article CAS Google Scholar
- Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA 95, 4013–4018 (1998).
Article CAS Google Scholar
- Maxwell, M.A. et al. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J. Biol. Chem. 280, 12573–12584 (2005).
Article CAS Google Scholar
- Kovalovsky, D. et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol. Endocrinol. 16, 1638–1651 (2002).
Article CAS Google Scholar
- Koo, S.H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α–dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).
Article CAS Google Scholar
- Shepherd, P.R. & Kahn, B.B. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248–257 (1999).
Article CAS Google Scholar
- Rhee, J. et al. Regulation of hepatic fasting response by PPARγ coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc. Natl. Acad. Sci. USA 100, 4012–4017 (2003).
Article CAS Google Scholar
- Arkenbout, E.K. et al. Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106, 1530–1535 (2002).
Article CAS Google Scholar
- Spiegelman, B.M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).
Article CAS Google Scholar
- Conkright, M.D. et al. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 1101–1108 (2003).
Article CAS Google Scholar
- Law, S.W., Conneely, O.M., DeMayo, F.J. & O'Malley, B.W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 6, 2129–2135 (1992).
CAS PubMed Google Scholar
- Ohkura, N., Hijikuro, M., Yamamoto, A. & Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem. Biophys. Res. Commun. 205, 1959–1965 (1994).
Article CAS Google Scholar
- Murphy, E.P. & Conneely, O.M. Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Mol. Endocrinol. 11, 39–47 (1997).
Article CAS Google Scholar
- Fahrner, T.J., Carroll, S.L. & Milbrandt, J. The NGFI-B protein, an inducible member of the thyroid/steroid receptor family, is rapidly modified posttranslationally. Mol. Cell. Biol. 10, 6454–6459 (1990).
Article CAS Google Scholar
- Erion, M.D. et al. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc. Natl. Acad. Sci. USA 102, 7970–7975 (2005).
Article CAS Google Scholar
- Wansa, K.D., Harris, J.M., Yan, G., Ordentlich, P. & Muscat, G.E. The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J. Biol. Chem. 278, 24776–24790 (2003).
Article CAS Google Scholar
- Ordentlich, P., Yan, Y., Zhou, S. & Heyman, R.A. Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J. Biol. Chem. 278, 24791–24799 (2003).
Article CAS Google Scholar
- Xu, J. et al. Peroxisome proliferator-activated receptor α (PPARα) influences substrate utilization for hepatic glucose production. J. Biol. Chem. 277, 50237–50244 (2002).
Article CAS Google Scholar
- Szafranek, J., Pfaffenberger, C.D. & Horning, E.C. The mass spectra of some per-O-acetylaldononitriles. Carbohydr. Res. 38, 97–105 (1974).
Article CAS Google Scholar
- Katz, J., Lee, W.N., Wals, P.A. & Bergner, E.A. Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. J. Biol. Chem. 264, 12994–13004 (1989).
CAS PubMed Google Scholar
- Lee, W.N., Byerley, L.O., Bergner, E.A. & Edmond, J. Mass isotopomer analysis: theoretical and practical considerations. Biol. Mass Spectrom. 20, 451–458 (1991).
Article CAS Google Scholar
- Laffitte, B.A. et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA 100, 5419–5424 (2003).
Article CAS Google Scholar
- Tontonoz, P. et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR γ and RXR α. Nucleic Acids Res. 22, 5628–5634 (1994).
Article CAS Google Scholar
- Castrillo, A., Diaz-Guerra, M.J., Hortelano, S., Martin-Sanz, P. & Bosca, L. Inhibition of IκB kinase and IκB phosphorylation by 15-deoxy-Δ(12,14)-prostaglandin J(2) in activated murine macrophages. Mol. Cell. Biol. 20, 1692–1698 (2000).
Article CAS Google Scholar
- Castrillo, A., Joseph, S.B., Marathe, C., Mangelsdorf, D.J. & Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem. 278, 10443–10449 (2003).
Article CAS Google Scholar
- Pei, L., Castrillo, A. & Tontonoz, P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol. Endocrinol. 20, 786–794 (2006).
Article CAS Google Scholar