Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype (original) (raw)
Trip, M.D., Cats, V.M., van Capelle, F.J. & Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med.322, 1549–1554 (1990). ArticleCAS Google Scholar
Lacoste, L. et al. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation92, 3172–3177 (1995). ArticleCAS Google Scholar
Kabbani, S.S. et al. Platelet reactivity characterized prospectively: a determinant of outcome 90 days after percutaneous coronary intervention. Circulation104, 181–186 (2001). ArticleCAS Google Scholar
Vanschoonbeek, K. et al. Thrombin-induced hyperactivity of platelets of young stroke patients: involvement of thrombin receptors in the subject-dependent variability in Ca2+ signal generation. Thromb. Haemost.88, 931–937 (2002). ArticleCAS Google Scholar
Kabbani, S.S. et al. Usefulness of platelet reactivity before percutaneous coronary intervention in determining cardiac risk one year later. Am. J. Cardiol.91, 876–878 (2003). Article Google Scholar
Carvalho, A.C., Colman, R.W. & Lees, R.S. Platelet function in hyperlipoproteinemia. N. Engl. J. Med.290, 434–438 (1974). ArticleCAS Google Scholar
Stuart, M.J., Gerrard, J.M. & White, J.G. Effect of cholesterol on production of thromboxane b2 by platelets in vitro. N. Engl. J. Med.302, 6–10 (1980). ArticleCAS Google Scholar
Davi, G. et al. Increased thromboxane biosynthesis in type IIa hypercholesterolemia. Circulation85, 1792–1798 (1992). ArticleCAS Google Scholar
Davi, G. et al. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation97, 953–957 (1998). ArticleCAS Google Scholar
Cipollone, F. et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation106, 399–402 (2002). ArticleCAS Google Scholar
Wang, T.H., Bhatt, D.L. & Topol, E.J. Aspirin and clopidogrel resistance: an emerging clinical entity. Eur. Heart J. (2005).
Salonen, J.T. et al. Effects of antioxidant supplementation on platelet function: a randomized pair-matched, placebo-controlled, double-blind trial in men with low antioxidant status. Am. J. Clin. Nutr.53, 1222–1229 (1991). ArticleCAS Google Scholar
Vericel, E., Januel, C., Carreras, M., Moulin, P. & Lagarde, M. Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status. Diabetes53, 1046–1051 (2004). ArticleCAS Google Scholar
Morita, H., Ikeda, H., Haramaki, N., Eguchi, H. & Imaizumi, T. Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers. J. Am. Coll. Cardiol.45, 589–594 (2005). Article Google Scholar
Berliner, J.A. & Watson, A.D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med.353, 9–11 (2005). ArticleCAS Google Scholar
Podrez, E.A. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem.277, 38503–38516 (2002). ArticleCAS Google Scholar
Podrez, E.A. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem.277, 38517–38523 (2002). ArticleCAS Google Scholar
Sun, M. et al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J. Biol. Chem.281, 4222–4230 (2006). ArticleCAS Google Scholar
Podrez, E.A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest.105, 1095–1108 (2000). ArticleCAS Google Scholar
Febbraio, M., Hajjar, D.P. & Silverstein, R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest.108, 785–791 (2001). ArticleCAS Google Scholar
Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest.105, 1049–1056 (2000). ArticleCAS Google Scholar
Tandon, N.N., Lipsky, R.H., Burgess, W.H. & Jamieson, G.A. Isolation and characterization of platelet glycoprotein IV (CD36). J. Biol. Chem.264, 7570–7575 (1989). CASPubMed Google Scholar
Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature433, 523–527 (2005). ArticleCAS Google Scholar
Podrez, E.A., Schmitt, D., Hoff, H.F. & Hazen, S.L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest.103, 1547–1560 (1999). ArticleCAS Google Scholar
Kieffer, N. et al. Developmentally-regulated expression of a 78-kDa erythroblast membrane glycoprotein immunologically related to the platelet thrombospondin receptor. Biochem. J.262, 835–842 (1989). ArticleCAS Google Scholar
Watson, A.D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally-oxidized low-density lipoproteins that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem.272, 13597–13607 (1997). ArticleCAS Google Scholar
Boullier, A. et al. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res.46, 969–976 (2005). ArticleCAS Google Scholar
Simon, D.I. et al. Decreased neointimal formation in Mac1−/− mice reveals a role for inflammation in vascular repair after angioplasty. J. Clin. Invest.105, 293–300 (2000). ArticleCAS Google Scholar
Sarma, J. et al. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation105, 2166–2171 (2002). Article Google Scholar
Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med.9, 61–67 (2003). ArticleCAS Google Scholar
Pearce, S.F. et al. Recombinant glutathione _S_-transferase/CD36 fusion proteins define an oxidized low-density lipoprotein–binding domain. J. Biol. Chem.273, 34875–34881 (1998). ArticleCAS Google Scholar
Febbraio, M., Guy, E. & Silverstein, R.L. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler. Thromb. Vasc. Biol.24, 2333–2338 (2004). ArticleCAS Google Scholar
Eitzman, D.T., Westrick, R.J., Xu, Z., Tyson, J. & Ginsburg, D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol.20, 1831–1834 (2000). ArticleCAS Google Scholar
Schafer, K. et al. Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol.23, 2097–2103 (2003). Article Google Scholar
Barter, P.J. et al. Antiinflammatory properties of HDL. Circ. Res.95, 764–772 (2004). ArticleCAS Google Scholar
Bodart, V. et al. CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ. Res.90, 844–849 (2002). ArticleCAS Google Scholar
Philips, J.A., Rubin, E.J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science309, 1251–1253 (2005). ArticleCAS Google Scholar
Tandon, N.N., Ockenhouse, C.F., Greco, N.J. & Jamieson, G.A. Adhesive functions of platelets lacking glycoprotein IV (CD36). Blood78, 2809–2813 (1991). CASPubMed Google Scholar
Englyst, N.A., Taube, J.M., Aitman, T.J., Baglin, T.P. & Byrne, C.D. A novel role for CD36 in VLDL-enhanced platelet activation. Diabetes52, 1248–1255 (2003). ArticleCAS Google Scholar
Huang, M.M., Bolen, J.B., Barnwell, J.W., Shattil, S.J. & Brugge, J.S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc. Natl. Acad. Sci. USA88, 7844–7848 (1991). ArticleCAS Google Scholar
Maschberger, P. et al. Mildly oxidized low-density lipoprotein rapidly stimulates via activation of the lysophosphatidic acid receptor Src family and Syk tyrosine kinases and Ca2+ influx in human platelets. J. Biol. Chem.275, 19159–19166 (2000). ArticleCAS Google Scholar
Angelillo-Scherrer, A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat. Med.7, 215–221 (2001). ArticleCAS Google Scholar
Andre, P. et al. CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nat. Med.8, 247–252 (2002). ArticleCAS Google Scholar
Prevost, N. et al. Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc. Natl. Acad. Sci. USA102, 9820–9825 (2005). ArticleCAS Google Scholar
Plow, E.F. et al. Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor, and thrombospondin on thrombin-stimulated human platelets. Blood66, 724–727 (1985). CASPubMed Google Scholar