- Luster, A.D. Chemokines—chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).
Article CAS Google Scholar
- Sonoda, Y. et al. Physiologic regulation of postovulatory neutrophil migration into vagina in mice by a C-X-C chemokine(s). J. Immunol. 6159–6165 (1998).
- Fialkow, L., Wang, Y. & Downey, G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med. 42, 153–164 (2007).
Article CAS Google Scholar
- Henricks, P.A.J. & Nijkamp, F.P. Reactive oxygen species as mediators in asthma. Pulm. Pharmacol. Ther. 14, 409–421 (2001).
Article CAS Google Scholar
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).
Article Google Scholar
- Cavaillon, J.M. & Adib-Conquy, M. Monocytes/macrophages and sepsis. Crit. Care Med. 33, S506–S509 (2005).
Article Google Scholar
- Josse, C., Boelaert, J.R., Best-Belpomme, M. & Piette, J. Importance of post-transcriptional regulation of chemokine genes by oxidative stress. Biochem. J. 360, 321–333 (2001).
Article CAS Google Scholar
- Zeng, X., Dai, J., Remick, D.G. & Wang, X. Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes. Circ. Res. 93, 311–320 (2003).
Article CAS Google Scholar
- Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L.M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316–324 (2001).
Article CAS Google Scholar
- Wilson, L., Butcher, C.J. & Kellie, S. Calcium ionophore A23187 induces interleukin-8 gene expression and protein secretion in human monocytic cells. FEBS Lett. 325, 295–298 (1993).
Article CAS Google Scholar
- Méndez-Samperio, P., Palma-Barrios, J., Vázquez-Hernández, A. & García-Martinez, E. Secretion of interleukin-8 by human-derived cell lines infected with Mycobacterium bovis. Mediators Inflamm. 13, 45–49 (2004).
Article Google Scholar
- Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).
Article CAS Google Scholar
- Perraud, A.L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).
Article CAS Google Scholar
- Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).
Article CAS Google Scholar
- Massullo, P., Sumoza-Toledo, A., Bhagat, H. & Partida-Sánchez, S. TRPM channels, calcium and redox sensors during innate immune responses. Semin. Cell Dev. Biol. 17, 654–666 (2006).
Article CAS Google Scholar
- Perraud, A.L. et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress–induced gating of TRPM2 cation channels. J. Biol. Chem. 280, 6138–6148 (2005).
Article CAS Google Scholar
- Kaneko, S. et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66–76 (2006).
Article CAS Google Scholar
- Korenaga, D. et al. Impaired antioxidant defense system of colonic tissue and cancer development in dextran sulfate sodium–induced colitis in mice. J. Surg. Res. 102, 144–149 (2002).
Article CAS Google Scholar
- Blackburn, A.C., Doe, W.F. & Buffinton, G.D. Salicylate hydroxylation as an indicator of hydroxyl radical generation in dextran sulfate–induced colitis. Free Radic. Biol. Med. 25, 305–313 (1998).
Article CAS Google Scholar
- Araki, Y., Sugihara, H. & Hattori, T. The free radical scavengers edaravone and tempol suppress experimental dextran sulfate sodium–induced colitis in mice. Int. J. Mol. Med. 17, 331–334 (2006).
CAS PubMed Google Scholar
- Chiu, L.L., Perng, D.W., Yu, C.H., Su, S.N. & Chow, L.P. Mold allergen, pen C 13, induces IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J. Immunol. 178, 5237–5244 (2007).
Article CAS Google Scholar
- Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1α–deficient colon cancer cells. Nat. Med. 11, 992–997 (2005).
Article CAS Google Scholar
- Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2, 596–607 (2006).
Article CAS Google Scholar
- Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).
Article CAS Google Scholar
- Lev, S. et al. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376, 737–745 (1995).
Article CAS Google Scholar
- Roose, J.P., Mollenauer, M., Gupta, V.A., Stone, J. & Weiss, A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol. Cell. Biol. 25, 4426–4441 (2005).
Article CAS Google Scholar
- Jaramillo, M. & Olivier, M. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase– and cyclic adenosine 5′-monophosphate (cAMP)–dependent pathways: involvement of NF-κB, activator protein 1, and cAMP response element binding protein. J. Immunol. 169, 7026–7038 (2002).
Article CAS Google Scholar
- Gloire, G., Legrand-Poels, S. & Piette, J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493–1505 (2006).
Article CAS Google Scholar
- Kim, D.-S., Han, J.H. & Kwon, H.J. NF-κB and c-Jun–dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633–643 (2003).
Article CAS Google Scholar
- Ohtsuka, Y. & Sanderson, I.R. Dextran sulfate sodium–induced inflammation is enhanced by intestinal epithelial cell chemokine expression in mice. Pediatr. Res. 53, 143–147 (2003).
CAS PubMed Google Scholar
- Saklatvala, J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4, 372–377 (2004).
Article CAS Google Scholar
- Lee, K. & Esselman, W.J. cAMP potentiates H2O2-induced ERK1/2 phosphorylation without the requirement for MEK1/2 phosphorylation. Cell. Signal. 13, 645–652 (2001).
Article CAS Google Scholar
- Seimiya, H. & Tsuruo, T. Differential expression of protein tyrosine phosphatase genes during phorbol ester–induced differentiation of human leukemia U937 cells. Cell Growth Differ. 4, 1033–1039 (1993).
CAS PubMed Google Scholar
- Zhang, W. et al. Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am. J. Physiol. Cell Physiol. 292, C1746–C1758 (2007).
Article CAS Google Scholar
- Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).
Article CAS Google Scholar
- Khor, T.O. et al. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium–induced colitis. Cancer Res. 66, 11580–11584 (2006).
Article CAS Google Scholar
- Han, X.B., Liu, X., Hsueh, W. & De Plaen, I.G. Macrophage inflammatory protein-2 mediates the bowel injury induced by platelet-activating factor. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1220–G1226 (2004).
Article CAS Google Scholar
- Buanne, P. et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J. Leukoc. Biol. 82, 1239–1246 (2007).
Article CAS Google Scholar
- Keshavarzian, A. et al. Increased interleukin-8 (IL-8) in rectal dialysate from patients with ulcerative colitis: evidence for a biological role for IL-8 in inflammation of the colon. Am. J. Gastroenterol. 94, 704–712 (1999).
Article CAS Google Scholar
- Anezaki, K. et al. Correlations between interleukin-8, and myeloperoxidase or luminol-dependent chemiluminescence in inflamed mucosa of ulcerative colitis. Intern. Med. 37, 253–258 (1998).
Article CAS Google Scholar
- Grip, O., Janciauskiene, S. & Lindgren, S. Macrophages in inflammatory bowel disease. Curr. Drug Targets Inflamm. Allergy 2, 155–160 (2003).
Article CAS Google Scholar
- Smith, P.D., Ochsenbauer-Jambor, C. & Smythies, L.E. Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev. 206, 149–159 (2005).
Article CAS Google Scholar
- Mahida, Y.R. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm. Bowel Dis. 6, 21–33 (2000).
Article CAS Google Scholar
- Videla, L.A., Fernández, V., Tapia, G. & Varela, P. Oxidative stress–mediated hepatotoxicity of iron and copper: role of Kupffer cells. Biometals 16, 103–111 (2003).
Article CAS Google Scholar
- Barnes, P.J. COPD: is there light at the end of the tunnel? Curr. Opin. Pharmacol. 4, 263–272 (2004).
Article CAS Google Scholar
- Hermosura, M.C. & Garruto, R.M. TRPM7 and _TRPM2_—candidate susceptibility genes for Western Pacific ALS and PD? Biochim. Biophys. Acta 1772, 822–835 (2007).
Article CAS Google Scholar
- Fonfria, E. et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143, 186–192 (2004).
Article CAS Google Scholar
- Cuzzocrea, S. et al. Role of poly(ADP-ribose) glycohydrolase in the development of inflammatory bowel disease in mice. Free Radic. Biol. Med. 42, 90–105 (2007).
Article CAS Google Scholar
- Haskó, G. et al. Poly(ADP-ribose) polymerase is a regulator of chemokine production: relevance for the pathogenesis of shock and inflammation. Mol. Med. 8, 283–289 (2002).
Article Google Scholar
- Partida-Sánchez, S. et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat. Med. 7, 1209–1216 (2001).
Article Google Scholar