Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis (original) (raw)
References
European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315 (1993).
van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science277, 805–808 (1997). ArticleCAS Google Scholar
Joinson, C. et al. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol. Med.33, 335–344 (2003). ArticleCAS Google Scholar
de Vries, P.J. & Prather, P.A. The tuberous sclerosis complex. N. Engl. J. Med.356, 92, author reply 93–94 (2007). ArticleCAS Google Scholar
de Vries, P.J. & Howe, C.J. The tuberous sclerosis complex proteins—a GRIPP on cognition and neurodevelopment. Trends Mol. Med.13, 319–326 (2007). ArticleCAS Google Scholar
Harrison, J.E., O'Callaghan, F.J., Hancock, E., Osborne, J.P. & Bolton, P.F. Cognitive deficits in normally intelligent patients with tuberous sclerosis. Am. J. Med. Genet.88, 642–646 (1999). ArticleCAS Google Scholar
Ridler, K. et al. Neuroanatomical correlates of memory deficits in tuberous sclerosis complex. Cereb. Cortex17, 261–271 (2007). ArticleCAS Google Scholar
Onda, H., Lueck, A., Marks, P.W., Warren, H.B. & Kwiatkowski, D.J. Tsc2+/− mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest.104, 687–695 (1999). ArticleCAS Google Scholar
Waltereit, R. et al. Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J. Neurochem.96, 407–413 (2006). ArticleCAS Google Scholar
von der Brelie, C., Waltereit, R., Zhang, L., Beck, H. & Kirschstein, T. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur. J. Neurosci.23, 686–692 (2006). Article Google Scholar
Goorden, S.M., van Woerden, G.M., van der Weerd, L., Cheadle, J.P. & Elgersma, Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann. Neurol.62, 648–655 (2007). Article Google Scholar
Murthy, V. et al. Developmental expression of the tuberous sclerosis proteins tuberin and hamartin. Acta Neuropathol.101, 202–210 (2001). CASPubMed Google Scholar
Floresco, S.B., Seamans, J.K. & Phillips, A.G. Selective roles for hippocampal, prefrontal cortical and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci.17, 1880–1890 (1997). ArticleCAS Google Scholar
Olton, D., Becker, J. & Handelmann, G. Hippocampus, space and memory. Behav. Brain Sci.2, 313–365 (1979). Article Google Scholar
Frankland, P.W., Cestari, V., Filipkowski, R.K., McDonald, R.J. & Silva, A.J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci.112, 863–874 (1998). ArticleCAS Google Scholar
Sancak, O. et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur. J. Hum. Genet.13, 731–741 (2005). ArticleCAS Google Scholar
Kwiatkowski, D.J. & Manning, B.D. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet.14, R251–R258 (2005). ArticleCAS Google Scholar
Tang, S.J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA99, 467–472 (2002). ArticleCAS Google Scholar
Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet.11, 525–534 (2002). ArticleCAS Google Scholar
Dragatsis, I. & Zeitlin, S. CaMKIα-Cre transgene expression and recombination patterns in the mouse brain. Genesis26, 133–135 (2000). ArticleCAS Google Scholar
Kwon, C.H., Zhu, X., Zhang, J. & Baker, S.J. mTor is required for hypertrophy of _Pten_-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA100, 12923–12928 (2003). ArticleCAS Google Scholar
Lewis, J.C., Thomas, H.V., Murphy, K.C. & Sampson, J.R. Genotype and psychological phenotype in tuberous sclerosis. J. Med. Genet.41, 203–207 (2004). ArticleCAS Google Scholar
O'Callaghan, F.J. et al. The relation of infantile spasms, tubers and intelligence in tuberous sclerosis complex. Arch. Dis. Child.89, 530–533 (2004). ArticleCAS Google Scholar
Raznahan, A. et al. Biological markers of intellectual disability in tuberous sclerosis. Psychol. Med.37, 1293–1304 (2007). Article Google Scholar
Jaworski, J. & Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol.34, 205–219 (2006). ArticleCAS Google Scholar
Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J. & Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci.8, 1727–1734 (2005). ArticleCAS Google Scholar
Banko, J.L. et al. The translation repressor 4E–BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci.25, 9581–9590 (2005). ArticleCAS Google Scholar
Dash, P.K., Orsi, S.A. & Moore, A.N. Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex–Mammalian target of rapamycin pathway. J. Neurosci.26, 8048–8056 (2006). ArticleCAS Google Scholar
Vanderklish, P.W. & Edelman, G.M. Differential translation and fragile X syndrome. Genes Brain Behav.4, 360–384 (2005). ArticleCAS Google Scholar
Bear, M.F., Dolen, G., Osterweil, E. & Nagarajan, N. Fragile X: translation in action. Neuropsychopharmacology33, 84–87 (2008). ArticleCAS Google Scholar