Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy (original) (raw)
MacLellan, W.R. & Schneider, M.D. Death by design. Programmed cell death in cardiovascular biology and disease. Circ. Res.81, 137–144 (1997). ArticleCAS Google Scholar
Narula, J. et al. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med.335, 1182–1189 (1996). ArticleCAS Google Scholar
Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med.336, 1131–1141 (1997). ArticleCAS Google Scholar
Mallat, Z. et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N. Engl. J. Med.335, 1190–1196 (1996). ArticleCAS Google Scholar
Adams, J.W. et al. Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA95, 10140–10145 (1998). ArticleCAS Google Scholar
Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell97, 189–198 (1999). ArticleCAS Google Scholar
Levy, D. et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med.322, 1561–1566 (1990). ArticleCAS Google Scholar
Chien, K.R. Molecular advances in cardiovascular biology. Science260, 916–917 (1993). ArticleCAS Google Scholar
Williams, R.S. Apoptosis and heart failure. N. Engl. J. Med.341, 759–760 (1999). ArticleCAS Google Scholar
Thornberry, N.A. & Lazebnik, Y. Caspases: Enemies within. Science281, 1312–1316 (1998). ArticleCAS Google Scholar
MacLellan, W.R. & Schneider, M.D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol.62, 289–319 (2000). ArticleCAS Google Scholar
Schneider, M.D. & Schwartz, R.J. Chips ahoy: Gene expression in failing hearts surveyed by high-density microarrays. Circulation102, 3026–3027 (2000). ArticleCAS Google Scholar
D'Angelo, D.D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl. Acad. Sci. USA94, 8121–8126 (1997). ArticleCAS Google Scholar
Offermanns, S. et al. Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice. EMBO J.17, 4304–4312 (1998). ArticleCAS Google Scholar
Akhter, S.A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science280, 574–577 (1998). ArticleCAS Google Scholar
Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat. Med.7, 1236–1240 (2001). ArticleCAS Google Scholar
Sakata, Y. et al. Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation97, 1488–1495 (1998). ArticleCAS Google Scholar
De Windt, L.J. et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ. Res.86, 255–263 (2000). ArticleCAS Google Scholar
Aronow, B.J. et al. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol. Genomics6, 19–28 (2001). ArticleCAS Google Scholar
Chen, G. et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem.274, 7–10 (1999). ArticleCAS Google Scholar
Adams, J.W. et al. Cardiomyocyte apoptosis induced by Gαq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ.Res.87, 1180–1187 (2000). ArticleCAS Google Scholar
Shi, Y. A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol.8, 394–401 (2001). ArticleCAS Google Scholar
Subramaniam, A. et al. Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem.266, 24613–24620 (1991). CASPubMed Google Scholar
Chien, K.R., Knowlton, K.U., Zhu, H. & Chien, S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB J.5, 3037–3046 (1991). ArticleCAS Google Scholar
Ray, R. et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275, 1439–1448 (2000). ArticleCAS Google Scholar
Chen, G. et al. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J. Exp. Med.186, 1975–1983 (1997). ArticleCAS Google Scholar
Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J.9, 189–208 (1969). ArticleCAS Google Scholar
Katz, A.M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med.322, 100–110 (1990). ArticleCAS Google Scholar
Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat. Med.6, 556–563 (2000). ArticleCAS Google Scholar
Cook, S.A., Sugden, P.H. & Clerk, A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: Association with changes in mitochondrial membrane potential. Circ. Res.85, 940–949 (1999). ArticleCAS Google Scholar
Leri, A. et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin–angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J. Clin. Invest.101, 1326–1342 (1998). ArticleCAS Google Scholar
Misao, J. et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation94, 1506–1512 (1996). ArticleCAS Google Scholar
Geisterfer-Lowrance, A.A. et al. A mouse model of familial hypertrophic cardiomyopathy. Science272, 731–734 (1996). ArticleCAS Google Scholar
Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α cardiac myosin heavy chain gene. J. Clin. Invest.103, 147–153 (1999). ArticleCAS Google Scholar
Bruick, R.K. Expression of the gene encoding the pro-apoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA97, 9082–9087 (2000). ArticleCAS Google Scholar
Yasuda, M. et al. BNIP3α: A human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res.59, 533–537 (1999). CASPubMed Google Scholar