Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure (original) (raw)

References

  1. Somlyo, A.P. & Somlyo, A.V. Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994).
    Article CAS Google Scholar
  2. Davis, M.J. & Hill, M.A. Signaling mechanisms underlying the vascular myogenic response. Phys. Rev. 79, 387–423 (1999).
    CAS Google Scholar
  3. Hartshorne, D.J. & Hirano, K. Interactions of protein phosphatase type 1, with a focus on myosin phosphatase. Mol. Cell. Biochem. 190, 79–84 (1999).
    Article CAS Google Scholar
  4. Lifton, R.P. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).
    Article CAS Google Scholar
  5. Neves, S.R., Ram, P.T. & Iyengar, R.G Protein pathways. Science 296, 1636–639 (2002).
    Article CAS Google Scholar
  6. Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).
    Article CAS Google Scholar
  7. Demoliou-Mason, C.D. G-protein-coupled receptors in vascular smooth muscle cells. Biol. Signals 7, 90–97 (1998).
    Article CAS Google Scholar
  8. Gohla, A., Schultz, G. & Offermanns, S. Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87, 221–227 (2000).
    Article CAS Google Scholar
  9. Lincoln, T.M. Cyclic GMP and vascular biology. in Cyclic GMP: Biochemistry, Physiology and Pathophysiology (ed. Lincoln, T.) 97–132 (R.G. Landes, Austin, Texas, 1994).
    Google Scholar
  10. Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).
    Article CAS Google Scholar
  11. Shesely, E.G. et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 93, 13176–13181 (1996).
    Article CAS Google Scholar
  12. Haynes, W.G., Noon, J.P., Walker, B.R. & Webb, D.J. L-NMMA increases blood pressure in man. Lancet 342, 931–932 (1993).
    Article CAS Google Scholar
  13. Pfeifer, A. et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 17, 3045–3051 (1998).
    Article CAS Google Scholar
  14. Rapoport, R.M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ. Res. 58, 407–410 (1986).
    Article CAS Google Scholar
  15. Hirata, M., Kohse, K.P., Chang, C.-H., Ikebe, T. & Murad, F. Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem. 265, 1268–1273 (1990).
    CAS PubMed Google Scholar
  16. Cornwell, T.L. & Lincoln, T.M. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. J. Biol. Chem. 264, 1146–1155 (1989).
    CAS PubMed Google Scholar
  17. Mendelsohn, M.E., O'Neill, S., George, D. & Loscalzo, J. Inhibition of fibrinogen binding to human platelets by _S_-nitroso-_N_-acetylcysteine. J. Biol. Chem. 265, 19028–19034 (1990).
    CAS PubMed Google Scholar
  18. Wu, X.Q., Somlyo, A.V. & Somlyo, A.P. GMP-dependent stimulation reverses G-protein-coupled inhibition of smooth muscle myosin light chain phosphatase. Biochem. Biophys. Res. Comm. 220, 658–663 (1996).
    Article CAS Google Scholar
  19. Lee, M.R., Li, L. & Kitazawa, T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J. Biol. Chem. 272, 5063–5068 (1997).
    Article CAS Google Scholar
  20. Wang, G.R., Zhu, Y., Halushka, P.V., Lincoln, T.M. & Mendelsohn, M.E. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 95, 4888–4893 (1998).
    Article CAS Google Scholar
  21. Surks, H.K. et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science 286, 1583–1587 (1999).
    Article CAS Google Scholar
  22. Schlossmann, J. et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature 404, 197–201 (2000).
    Article CAS Google Scholar
  23. Yuasa, K., Michibata, H., Omori, K. & Yanaka, N. A novel interaction of cGMP-dependent protein kinase I with troponin T. J. Biol. Chem. 274, 37429–37434 (1999).
    Article CAS Google Scholar
  24. Yamamoto, S., Yan, F., Zhou, H. & Tai, H.H. Serine 331 is the major site of receptor phosphorylation induced by agents that activate protein kinase G in HEK 293 cells overexpressing thromboxane receptor α. Arch. Biochem. Biophys. 393, 97–105 (2001).
    Article CAS Google Scholar
  25. Surks, H.K. & Mendelsohn, M.E. Dimerization of cGMP-dependent protein kinase 1α and the myosin-binding subunit of myosin phosphatase: role of leucine zipper domains. Cell Signal. 15, 937–944 (2003).
    Article CAS Google Scholar
  26. Xia, C., Bao, Z., Yue, C., Sanborn, B.M. & Liu, M. Phosphorylation and regulation of G-protein-activated phospholipase C-β 3 by cGMP-dependent protein kinases. J. Biol. Chem. 276, 19770–19777 (2001).
    Article CAS Google Scholar
  27. Feil, R. et al. Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ. Res. 90, 1080–1086 (2002).
    Article CAS Google Scholar
  28. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).
    Article CAS Google Scholar
  29. Hung, D.T., Vu, T.H., Nelken, N.A. & Coughlin, S.R. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J. Cell Biol. 116, 827–832 (1992).
    Article CAS Google Scholar
  30. Pitcher, J.A., Freedman, N.J. & Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).
    Article CAS Google Scholar
  31. Ishii, K. et al. Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G- protein coupled receptor kinases. J. Biol. Chem. 269, 1125–1130 (1994).
    CAS PubMed Google Scholar
  32. Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H. & Blumer, K.J. RGS family members: GTPase-activation proteins for heterotrimeric G-protein α-subunits. Nature 383, 172–175 (1996).
    Article CAS Google Scholar
  33. Heximer, S.P., Watson, N., Linder, M.E., Blumer, K.J. & Hepler, J.R. RGS-2/G0S8 is a selective inhibitor of Gqα function. Proc. Natl. Acad. Sci. USA 94, 14389–14393 (1997).
    Article CAS Google Scholar
  34. Ammendola, A., Geiselhoringer, A., Hofmann, F. & Schlossmann, J. Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase I β. J. Biol. Chem. 276, 24153–24159 (2001).
    Article CAS Google Scholar
  35. Heximer, S.P., Lim, H., Bernard, J.L. & Blumer, K.J. Mechanisms governing subcellular localization and function of human RGS-2. J. Biol. Chem. 276, 14195–14203 (2001).
    Article CAS Google Scholar
  36. Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556 (1999).
    Article CAS Google Scholar
  37. Pedram, A., Razandi, M., Kehrl, J. & Levin, E.R. Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J. Biol. Chem. 275, 7365–7372 (2000).
    Article CAS Google Scholar
  38. Chidiac, P. & Ross, E.M. Phospholipase C-β 1 directly accelerates GTP hydrolysis by Gαq and acceleration is inhibited by Gβγ subunits. J. Biol. Chem. 274, 19639–19643 (1999).
    Article CAS Google Scholar
  39. Oliveira, D.S. et al. Regulation of T cell activation, anxiety, and male aggression by RGS-2. Proc. Natl. Acad. Sci. USA 97, 12272–12277 (2000).
    Article Google Scholar
  40. Heximer, S.P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS-2-deficient mice. J. Clin. Invest. 111, 1259 (2003).
    CAS PubMed PubMed Central Google Scholar
  41. Le, T.H. & Coffman, T.M. RGS-2: a 'turn-off' in hypertension. J. Clin. Invest. 111, 441–443 (2003).
    Article CAS Google Scholar
  42. Shapiro, M.J., Trejo, J., Zeng, D. & Coughlin, S.R. Role of the thrombin receptor's cytoplasmic tail in intracellular trafficking. Distinct determinants for agonist-triggered versus tonic internalization and intracellular localization. J. Biol. Chem. 271, 32874–32880 (1996).
    Article CAS Google Scholar
  43. Zhu, Y., O'Neill, S., Saklatvala, J., Tassi, L. & Mendelsohn, M.E. Phosphorylated HSP27 associates with the activated-dependent cytoskeleton in human platelets. Blood 84, 3715–3723 (1994).
    CAS PubMed Google Scholar
  44. Beinborn, M., Quinn, S.M. & Kopin, A.S. Minor modifications of a cholecystokinin-B/gastrin receptor non-peptide antagonist confer a broad spectrum of functional properties. J. Biol. Chem. 273, 14146–14151 (1998).
    Article CAS Google Scholar
  45. Ingi, T. et al. Dynamic regulation of RGS-2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 274, 19639–19643 (1999).
    Google Scholar
  46. Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295, 505–508 (2003).
    Article Google Scholar

Download references