Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure (original) (raw)
References
Somlyo, A.P. & Somlyo, A.V. Signal transduction and regulation in smooth muscle. Nature372, 231–236 (1994). ArticleCAS Google Scholar
Davis, M.J. & Hill, M.A. Signaling mechanisms underlying the vascular myogenic response. Phys. Rev.79, 387–423 (1999). CAS Google Scholar
Hartshorne, D.J. & Hirano, K. Interactions of protein phosphatase type 1, with a focus on myosin phosphatase. Mol. Cell. Biochem.190, 79–84 (1999). ArticleCAS Google Scholar
Lifton, R.P. & Geller, D.S. Molecular mechanisms of human hypertension. Cell104, 545–556 (2001). ArticleCAS Google Scholar
Neves, S.R., Ram, P.T. & Iyengar, R.G Protein pathways. Science296, 1636–639 (2002). ArticleCAS Google Scholar
Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature361, 315–325 (1993). ArticleCAS Google Scholar
Demoliou-Mason, C.D. G-protein-coupled receptors in vascular smooth muscle cells. Biol. Signals7, 90–97 (1998). ArticleCAS Google Scholar
Gohla, A., Schultz, G. & Offermanns, S. Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ. Res.87, 221–227 (2000). ArticleCAS Google Scholar
Lincoln, T.M. Cyclic GMP and vascular biology. in Cyclic GMP: Biochemistry, Physiology and Pathophysiology (ed. Lincoln, T.) 97–132 (R.G. Landes, Austin, Texas, 1994). Google Scholar
Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature377, 239–242 (1995). ArticleCAS Google Scholar
Shesely, E.G. et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA93, 13176–13181 (1996). ArticleCAS Google Scholar
Pfeifer, A. et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J.17, 3045–3051 (1998). ArticleCAS Google Scholar
Rapoport, R.M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ. Res.58, 407–410 (1986). ArticleCAS Google Scholar
Hirata, M., Kohse, K.P., Chang, C.-H., Ikebe, T. & Murad, F. Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem.265, 1268–1273 (1990). CASPubMed Google Scholar
Cornwell, T.L. & Lincoln, T.M. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. J. Biol. Chem.264, 1146–1155 (1989). CASPubMed Google Scholar
Mendelsohn, M.E., O'Neill, S., George, D. & Loscalzo, J. Inhibition of fibrinogen binding to human platelets by _S_-nitroso-_N_-acetylcysteine. J. Biol. Chem.265, 19028–19034 (1990). CASPubMed Google Scholar
Lee, M.R., Li, L. & Kitazawa, T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J. Biol. Chem.272, 5063–5068 (1997). ArticleCAS Google Scholar
Wang, G.R., Zhu, Y., Halushka, P.V., Lincoln, T.M. & Mendelsohn, M.E. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA95, 4888–4893 (1998). ArticleCAS Google Scholar
Surks, H.K. et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science286, 1583–1587 (1999). ArticleCAS Google Scholar
Schlossmann, J. et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature404, 197–201 (2000). ArticleCAS Google Scholar
Yuasa, K., Michibata, H., Omori, K. & Yanaka, N. A novel interaction of cGMP-dependent protein kinase I with troponin T. J. Biol. Chem.274, 37429–37434 (1999). ArticleCAS Google Scholar
Yamamoto, S., Yan, F., Zhou, H. & Tai, H.H. Serine 331 is the major site of receptor phosphorylation induced by agents that activate protein kinase G in HEK 293 cells overexpressing thromboxane receptor α. Arch. Biochem. Biophys.393, 97–105 (2001). ArticleCAS Google Scholar
Surks, H.K. & Mendelsohn, M.E. Dimerization of cGMP-dependent protein kinase 1α and the myosin-binding subunit of myosin phosphatase: role of leucine zipper domains. Cell Signal.15, 937–944 (2003). ArticleCAS Google Scholar
Xia, C., Bao, Z., Yue, C., Sanborn, B.M. & Liu, M. Phosphorylation and regulation of G-protein-activated phospholipase C-β 3 by cGMP-dependent protein kinases. J. Biol. Chem.276, 19770–19777 (2001). ArticleCAS Google Scholar
Feil, R. et al. Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ. Res.90, 1080–1086 (2002). ArticleCAS Google Scholar
Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature407, 258–264 (2000). ArticleCAS Google Scholar
Hung, D.T., Vu, T.H., Nelken, N.A. & Coughlin, S.R. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J. Cell Biol.116, 827–832 (1992). ArticleCAS Google Scholar
Pitcher, J.A., Freedman, N.J. & Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem.67, 653–692 (1998). ArticleCAS Google Scholar
Ishii, K. et al. Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G- protein coupled receptor kinases. J. Biol. Chem.269, 1125–1130 (1994). CASPubMed Google Scholar
Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H. & Blumer, K.J. RGS family members: GTPase-activation proteins for heterotrimeric G-protein α-subunits. Nature383, 172–175 (1996). ArticleCAS Google Scholar
Heximer, S.P., Watson, N., Linder, M.E., Blumer, K.J. & Hepler, J.R. RGS-2/G0S8 is a selective inhibitor of Gqα function. Proc. Natl. Acad. Sci. USA94, 14389–14393 (1997). ArticleCAS Google Scholar
Ammendola, A., Geiselhoringer, A., Hofmann, F. & Schlossmann, J. Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase I β. J. Biol. Chem.276, 24153–24159 (2001). ArticleCAS Google Scholar
Heximer, S.P., Lim, H., Bernard, J.L. & Blumer, K.J. Mechanisms governing subcellular localization and function of human RGS-2. J. Biol. Chem.276, 14195–14203 (2001). ArticleCAS Google Scholar
Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem.274, 3549–3556 (1999). ArticleCAS Google Scholar
Pedram, A., Razandi, M., Kehrl, J. & Levin, E.R. Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J. Biol. Chem.275, 7365–7372 (2000). ArticleCAS Google Scholar
Chidiac, P. & Ross, E.M. Phospholipase C-β 1 directly accelerates GTP hydrolysis by Gαq and acceleration is inhibited by Gβγ subunits. J. Biol. Chem.274, 19639–19643 (1999). ArticleCAS Google Scholar
Oliveira, D.S. et al. Regulation of T cell activation, anxiety, and male aggression by RGS-2. Proc. Natl. Acad. Sci. USA97, 12272–12277 (2000). Article Google Scholar
Heximer, S.P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS-2-deficient mice. J. Clin. Invest.111, 1259 (2003). CASPubMedPubMed Central Google Scholar
Le, T.H. & Coffman, T.M. RGS-2: a 'turn-off' in hypertension. J. Clin. Invest.111, 441–443 (2003). ArticleCAS Google Scholar
Shapiro, M.J., Trejo, J., Zeng, D. & Coughlin, S.R. Role of the thrombin receptor's cytoplasmic tail in intracellular trafficking. Distinct determinants for agonist-triggered versus tonic internalization and intracellular localization. J. Biol. Chem.271, 32874–32880 (1996). ArticleCAS Google Scholar
Zhu, Y., O'Neill, S., Saklatvala, J., Tassi, L. & Mendelsohn, M.E. Phosphorylated HSP27 associates with the activated-dependent cytoskeleton in human platelets. Blood84, 3715–3723 (1994). CASPubMed Google Scholar
Beinborn, M., Quinn, S.M. & Kopin, A.S. Minor modifications of a cholecystokinin-B/gastrin receptor non-peptide antagonist confer a broad spectrum of functional properties. J. Biol. Chem.273, 14146–14151 (1998). ArticleCAS Google Scholar
Ingi, T. et al. Dynamic regulation of RGS-2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci.274, 19639–19643 (1999). Google Scholar
Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science295, 505–508 (2003). Article Google Scholar