Therapeutic effects of lysophosphatidylcholine in experimental sepsis (original) (raw)
Hoyert, D.L., Kochanek, K.D. & Murphy, S.L. Deaths: final data for 1997. Natl. Vital Stat. Rep.47, 1–104 (1999). PubMed Google Scholar
Huber-Lang, M.S. et al. Complement-induced impairment of innate immunity during sepsis. J. Immunol.169, 3223–3231 (2002). ArticleCAS Google Scholar
Czermak, B.J. et al. Protective effects of C5a blockade in sepsis. Nat. Med.5, 788–792 (1999). ArticleCAS Google Scholar
Docke, W.D. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med.3, 678–681 (1997). ArticleCAS Google Scholar
Wang, S.D., Huang, K.J., Lin, Y.S. & Lei, H.Y. Sepsis-induced apoptosis of the thymocytes in mice. J. Immunol.152, 5014–5021 (1994). CASPubMed Google Scholar
Ayala, A. et al. Increased mucosal B-lymphocyte apoptosis during polymicrobial sepsis is a Fas ligand but not an endotoxin-mediated process. Blood91, 1362–1372 (1998). CASPubMed Google Scholar
Hotchkiss, R.S. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol.166, 6952–6963 (2001). ArticleCAS Google Scholar
Hotchkiss, R.S. & Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med.348, 138–150 (2003). ArticleCAS Google Scholar
Bone, R.C. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit. Care Med.24, 1125–1128 (1996). ArticleCAS Google Scholar
Huber-Lang, M.S. et al. Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB J.15, 568–570 (2001). ArticleCAS Google Scholar
Hotchkiss, R.S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA96, 14541–14546 (1999). ArticleCAS Google Scholar
Kabarowski, J.H., Xu, Y. & Witte, O.N. Lysophosphatidylcholine as a ligand for immunoregulation. Biochem. Pharmacol.64, 161–167 (2002). ArticleCAS Google Scholar
Quinn, M.T., Parthasarathy, S. & Steinberg, D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc. Natl. Acad. Sci. USA85, 2805–2809 (1988). ArticleCAS Google Scholar
Nakano, T., Raines, E.W., Abraham, J.A., Klagsbrun, M. & Ross, R. Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc. Natl. Acad. Sci. USA91, 1069–1073 (1994). ArticleCAS Google Scholar
Liu-Wu, Y., Hurt-Camejo, E. & Wiklund, O. Lysophosphatidylcholine induces the production of IL-1β by human monocytes. Atherosclerosis137, 351–357 (1998). ArticleCAS Google Scholar
Coutant, F. et al. Mature dendritic cell generation promoted by lysophosphatidylcholine. J. Immunol.169, 1688–1695 (2002). ArticleCAS Google Scholar
Sakai, M. et al. Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J. Biol. Chem.269, 31430–31435 (1994). CASPubMed Google Scholar
Gomez-Munoz, A., O'Brien, L., Hundal, R. & Steinbrecher, U.P. Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J. Lipid Res.40, 988–993 (1999). CASPubMed Google Scholar
De Vries, H.E. et al. Acute effects of oxidized low density lipoprotein on metabolic responses in macrophages. FASEB J.12, 111–118 (1998). ArticleCAS Google Scholar
Ngwenya, B.Z. & Yamamoto, N. Effects of inflammation products on immune systems. Lysophosphatidylcholine stimulates macrophages. Cancer Immunol. Immunother.21, 174–182 (1986). ArticleCAS Google Scholar
Ramos, M.A. et al. Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.18, 1188–1196 (1998). ArticleCAS Google Scholar
McMurray, H.F., Parthasarathy, S. & Steinberg, D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J. Clin. Invest.92, 1004–1008 (1993). ArticleCAS Google Scholar
Asaoka, Y., Oka, M., Yoshida, K. & Nishizuka, Y. Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ion for T-lymphocyte activation. Biochem. Biophys. Res. Commun.178, 1378–1385 (1991). ArticleCAS Google Scholar
Nishi, E. et al. Lysophosphatidylcholine increases expression of heparin-binding epidermal growth factor-like growth factor in human T lymphocytes. Circ. Res.80, 638–644 (1997). ArticleCAS Google Scholar
Nishi, E. et al. Lysophosphatidylcholine enhances cytokine-induced interferon gamma expression in human T lymphocytes. Circ. Res.83, 508–515 (1998). ArticleCAS Google Scholar
Asaoka, Y., Oka, M., Yoshida, K., Sasaki, Y. & Nishizuka, Y. Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc. Natl. Acad. Sci. USA89, 6447–6451 (1992). ArticleCAS Google Scholar
Savage, J.E., Theron, A.J. & Anderson, R. Activation of neutrophil membrane-associated oxidative metabolism by ultraviolet radiation. J. Invest. Dermatol.101, 532–536 (1993). ArticleCAS Google Scholar
Nishioka, H., Horiuchi, H., Arai, H. & Kita, T. Lysophosphatidylcholine generates superoxide anions through activation of phosphatidylinositol 3-kinase in human neutrophils. FEBS Lett.441, 63–66 (1998). ArticleCAS Google Scholar
Silliman, C.C. et al. Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J. Leukoc. Biol.73, 511–524 (2003). ArticleCAS Google Scholar
Kabarowski, J.H., Zhu, K., Le, L.Q., Witte, O.N. & Xu, Y. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science293, 702–705 (2001). ArticleCAS Google Scholar
Muller Kobold, A.C. et al. Leukocyte activation in sepsis; correlations with disease state and mortality. Intensive Care Med.26, 883–892 (2000). ArticleCAS Google Scholar
Solomkin, J.S., Jenkins, M.K., Nelson, R.D., Chenoweth, D. & Simmons, R.L. Neutrophil dysfunction in sepsis. II. Evidence for the role of complement activation products in cellular deactivation. Surgery90, 319–327 (1981). CASPubMed Google Scholar
Zhu, K. et al. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem.276, 41325–41335 (2001). ArticleCAS Google Scholar
Okajima, F. et al. Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/Ca2+ system in HL-60 leukaemia cells. Biochem. J.336, 491–500 (1998). ArticleCAS Google Scholar
Zantl, N. et al. Essential role of gamma interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis. Infect. Immun.66, 2300–2309 (1998). CASPubMedPubMed Central Google Scholar
Tzianabos, A.O. et al. IL-2 mediates protection against abscess formation in an experimental model of sepsis. J. Immunol.163, 893–897 (1999). CASPubMed Google Scholar
Weighardt, H. et al. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann. Surg.235, 560–567 (2002). Article Google Scholar
Nakahata, E., Shindoh, Y., Takayama, T. & Shindoh, C. Interleukin-12 prevents diaphragm muscle deterioration in a septic animal model. Comp. Biochem. Physiol. A Mol. Integr. Physiol.130, 653–663 (2001). ArticleCAS Google Scholar
Remick, D.G. et al. Combination immunotherapy with soluble tumor necrosis factor receptors plus interleukin 1 receptor antagonist decreases sepsis mortality. Crit. Care Med.29, 473–481 (2001). ArticleCAS Google Scholar
Matsumoto, T. et al. Contribution of neutrophils to lipopolysaccharide-induced tumor necrosis factor production and mortality in a carrageenan-pretreated mouse model. FEMS Immunol. Med. Microbiol.17, 171–178 (1997). ArticleCAS Google Scholar
Drobnik, W. et al. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J. Lipid Res.44, 754–761 (2003). ArticleCAS Google Scholar
Macphee, C.H. Lipoprotein-associated phospholipase A2: a potential new risk factor for coronary artery disease and a therapeutic target. Curr. Opin. Pharmacol.1, 121–125 (2001). ArticleCAS Google Scholar
Corr, P.B. et al. Pathophysiological concentrations of lysophosphatides and the slow response. Am. J. Physiol.243, H187–H195 (1982). CASPubMed Google Scholar
Kishimoto, T., Soda, Y., Matsuyama, Y. & Mizuno, K. An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin. Biochem.35, 411–416 (2002). ArticleCAS Google Scholar
Szucs, S., Varga, C., Ember, I. & Kertai, P. The separation of the granulocytes from different rat strains. A comparative study. J. Immunol. Methods167, 245–251 (1994) ArticleCAS Google Scholar
Qureshi, M.A. & Dietert, R.R. Bacterial uptake and killing by macrophages. in Methods in Immunotoxicology Vol. 2 (eds. Burleson, G.R., Dean, J.H. & Munson, A.E.) 119–131 (Wiley-Liss, New York, 1995). Google Scholar
Weng, Z. et al. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc. Natl. Acad. Sci. USA95, 12334–12339 (1998). ArticleCAS Google Scholar