Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics (original) (raw)

References

  1. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).
    Article CAS Google Scholar
  2. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).
    Article CAS Google Scholar
  3. Kroger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).
    Article CAS Google Scholar
  4. Brott, L. L. et al. Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413, 291–293 (2001).
    Article CAS Google Scholar
  5. Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally responsive polypeptides. Nature Biotechnol. 17, 1112–1115 (1999).
    Article CAS Google Scholar
  6. Knoblauch, M. et al. ATP-independent contractile proteins from plants. Nature Mater. 2, 600–603 (2003).
    Article CAS Google Scholar
  7. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).
    Article CAS Google Scholar
  8. Byrne, M. E., Park, K. & Peppas, N. A. Molecular imprinting within hydrogels. Adv. Drug Del. Rev. 54, 149–161 (2002).
    Article CAS Google Scholar
  9. Galaev, I. Y. & Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. TIBTECH 17, 335–340 (1999).
    Article CAS Google Scholar
  10. Obaidat, A. A. & Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18, 801–806 (1997).
    Article CAS Google Scholar
  11. Torres-Lugo, M. & Peppas, N. A. Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. J. Nanoparticle Res. 4, 73–81 (2002).
    Article CAS Google Scholar
  12. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Del. Rev. 43, 3–12 (2002).
    Article Google Scholar
  13. Guiseppi-Elie, A., Brahim, S. I. & Narinesingh, D. A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv. Mater. 14, 743–746 (2002).
    Article CAS Google Scholar
  14. Van der Linden, H. J., Herber, S., Olthuis, W. & Bergveld, P. Stimuli-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128, 325–331 (2003).
    Article CAS Google Scholar
  15. Zhao, B. & Moore, J. S. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir 17, 4748–4763 (2001).
    Google Scholar
  16. Holz, J. H., Holz, J. S., Munro, C. H. & Asher, S. A. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem. 70, 780–781 (1998).
    Article Google Scholar
  17. Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).
    Article CAS Google Scholar
  18. Zhang, X.-Z., Zhuo, R.-X., Cui, J.-Z. & Zhang, J.-T. A novel thermo-responsive drug delivery system with positive controlled release. Int. J. Pharmaceutics 235, 43–50 (2002).
    Article CAS Google Scholar
  19. Wang, C., Stewart, R. J. & Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397, 417–420 (1999).
    Article CAS Google Scholar
  20. Jager, E. W. H., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).
    Article CAS Google Scholar
  21. Low, L.-M., Seetharaman, S., He, K.-Q. & Madou, M. J. Microactuators toward microvalves for responsive controlled drug delivery. Sens. Actuat. B 67, 149–160 (2000).
    Article CAS Google Scholar
  22. Rosiak, J. M. & Yoshii, F. Hydrogels and their medical applications. Nucl. Instr. Meth. Physics Res. B 151, 56–64 (1999).
    Article CAS Google Scholar
  23. Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Del. Rev. 54, 79–98 (2002).
    Article CAS Google Scholar
  24. Petka, W. A, Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).
    Article CAS Google Scholar
  25. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).
    Article CAS Google Scholar
  26. Deo, S. K. et al. Responsive drug delivery systems. Anal. Chem. 76, 207A–213A (2003).
    Google Scholar
  27. Kopecek, J. Swell gels. Nature 417, 388–389 (2002).
    Article CAS Google Scholar
  28. Schauer-Vukasinovic, V. & Daunert, S. Purification of recombinant proteins based on the interaction between a phenothiazine-derivatized column and a calmodulin fusion tail. Biotechnol. Prog. 15, 513–516 (1999).
    Article CAS Google Scholar
  29. Schauer-Vukasinovic, V., Cullen, L. & Daunert, S. Rational design of a calcium sensing system based on induced conformational changes of calmodulin. J. Am. Chem. Soc. 119, 11102–11103 (1997).
    Article CAS Google Scholar
  30. Douglass, P. M., Salins, L. E., Dikici, E. & Daunert, S. Class-selective drug detection: fluorescently-labeled calmodulin as the biorecognition element for phenothiazines and tricyclic antidepressants. Bioconjugate Chem. 13, 1186–1192 (2002).
    Article CAS Google Scholar
  31. Lu, C.-H., Wang, J. & Deng, K.-L. Imaging and profiling surface microstructures with noninterferometric confocal laser feedback. Appl. Phys. Lett. 66, 2022–2024 (1995).
    Article CAS Google Scholar
  32. Kim, S. & Chu C. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J. Biomed. Mater. Res. 53, 258–266 (2000).
    Article CAS Google Scholar

Download references