Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics (original) (raw)
References
Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science290, 1555–1558 (2000). ArticleCAS Google Scholar
Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater.1, 173–177 (2002). ArticleCAS Google Scholar
Kroger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science286, 1129–1132 (1999). ArticleCAS Google Scholar
Brott, L. L. et al. Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature413, 291–293 (2001). ArticleCAS Google Scholar
Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally responsive polypeptides. Nature Biotechnol.17, 1112–1115 (1999). ArticleCAS Google Scholar
Knoblauch, M. et al. ATP-independent contractile proteins from plants. Nature Mater.2, 600–603 (2003). ArticleCAS Google Scholar
Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature404, 588–590 (2000). ArticleCAS Google Scholar
Byrne, M. E., Park, K. & Peppas, N. A. Molecular imprinting within hydrogels. Adv. Drug Del. Rev.54, 149–161 (2002). ArticleCAS Google Scholar
Galaev, I. Y. & Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. TIBTECH17, 335–340 (1999). ArticleCAS Google Scholar
Obaidat, A. A. & Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials18, 801–806 (1997). ArticleCAS Google Scholar
Torres-Lugo, M. & Peppas, N. A. Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. J. Nanoparticle Res.4, 73–81 (2002). ArticleCAS Google Scholar
Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Del. Rev.43, 3–12 (2002). Article Google Scholar
Guiseppi-Elie, A., Brahim, S. I. & Narinesingh, D. A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv. Mater.14, 743–746 (2002). ArticleCAS Google Scholar
Van der Linden, H. J., Herber, S., Olthuis, W. & Bergveld, P. Stimuli-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst128, 325–331 (2003). ArticleCAS Google Scholar
Zhao, B. & Moore, J. S. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir17, 4748–4763 (2001). Google Scholar
Holz, J. H., Holz, J. S., Munro, C. H. & Asher, S. A. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem.70, 780–781 (1998). Article Google Scholar
Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett.45, 1636–1639 (1980). ArticleCAS Google Scholar
Zhang, X.-Z., Zhuo, R.-X., Cui, J.-Z. & Zhang, J.-T. A novel thermo-responsive drug delivery system with positive controlled release. Int. J. Pharmaceutics235, 43–50 (2002). ArticleCAS Google Scholar
Wang, C., Stewart, R. J. & Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature397, 417–420 (1999). ArticleCAS Google Scholar
Jager, E. W. H., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science290, 1540–1545 (2000). ArticleCAS Google Scholar
Low, L.-M., Seetharaman, S., He, K.-Q. & Madou, M. J. Microactuators toward microvalves for responsive controlled drug delivery. Sens. Actuat. B67, 149–160 (2000). ArticleCAS Google Scholar
Rosiak, J. M. & Yoshii, F. Hydrogels and their medical applications. Nucl. Instr. Meth. Physics Res. B151, 56–64 (1999). ArticleCAS Google Scholar
Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Del. Rev.54, 79–98 (2002). ArticleCAS Google Scholar
Petka, W. A, Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science281, 389–392 (1998). ArticleCAS Google Scholar
Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature399, 766–769 (1999). ArticleCAS Google Scholar
Deo, S. K. et al. Responsive drug delivery systems. Anal. Chem.76, 207A–213A (2003). Google Scholar
Schauer-Vukasinovic, V. & Daunert, S. Purification of recombinant proteins based on the interaction between a phenothiazine-derivatized column and a calmodulin fusion tail. Biotechnol. Prog.15, 513–516 (1999). ArticleCAS Google Scholar
Schauer-Vukasinovic, V., Cullen, L. & Daunert, S. Rational design of a calcium sensing system based on induced conformational changes of calmodulin. J. Am. Chem. Soc.119, 11102–11103 (1997). ArticleCAS Google Scholar
Douglass, P. M., Salins, L. E., Dikici, E. & Daunert, S. Class-selective drug detection: fluorescently-labeled calmodulin as the biorecognition element for phenothiazines and tricyclic antidepressants. Bioconjugate Chem.13, 1186–1192 (2002). ArticleCAS Google Scholar
Lu, C.-H., Wang, J. & Deng, K.-L. Imaging and profiling surface microstructures with noninterferometric confocal laser feedback. Appl. Phys. Lett.66, 2022–2024 (1995). ArticleCAS Google Scholar
Kim, S. & Chu C. Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J. Biomed. Mater. Res.53, 258–266 (2000). ArticleCAS Google Scholar