Non-viral gene delivery regulated by stiffness of cell adhesion substrates (original) (raw)

References

  1. Niidome, T. & Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 9, 1647–1652 (2002).
    Article CAS Google Scholar
  2. Jiao, S. S., Gurevich, V. & Wolff, J. A. Long-term correction of rat model of Parkinsons-disease by gene therapy. Nature 362, 450–453 (1993).
    Article CAS Google Scholar
  3. Shea, L. D., Smiley, E., Bonadio, J. & Mooney, D. J. DNA delivery from polymer matrics for tissue engineering. Nature Biotechnol. 17, 551–554 (1999).
    Article CAS Google Scholar
  4. Christiano, R. Viral and non-viral vectors for cancer gene therapy. Anticancer Res. 18, 3241–3246. (1998).
    Google Scholar
  5. Brown, M. D., Gschatzlein, A. & Uchegbu, I. F. Gene delivery of synthetic (non viral) carriers, Int. J. Phamaceut. 229, 1–21 (2001).
    Article CAS Google Scholar
  6. Schaffer, D. V. & Laffenburger, D. A. Optimization of cell surface binging enhanced efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem. 273, 28004–28009 (1998).
    Article CAS Google Scholar
  7. Boussif, O. et al. A versatile vector for gene and nucleotide transfer into cells in culture and in vivo-polyethyleneimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).
    Article CAS Google Scholar
  8. Felgner, P. et al. Lipofection-highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).
    Article CAS Google Scholar
  9. Adami, R. C. et al. Stability of peptide condensed plasmid DNA formulation. J. Pharmaceut. Sci. 87, 678–683 (1998).
    Article CAS Google Scholar
  10. Salem, A. K., Searson, P. C. & Leong, K. W. Multifunctional nanorods for gene delivery. Nature Mater. 2, 668–671 (2003).
    Article CAS Google Scholar
  11. Luo, D. & Saltzman, W. M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnol. 18, 893–895 (2000).
    Article CAS Google Scholar
  12. Shen, H., Tan, J. & Saltzman, W. M. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Mater. 3, 569–574 (2004).
    Article CAS Google Scholar
  13. Galbraith, C. & Sheetz, M. P. Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10, 566–571 (1998).
    Article CAS Google Scholar
  14. Pelham, R. J. & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate rigidity. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
    Article CAS Google Scholar
  15. Wang, H. B., Dembo, M. & Wang, Y. L. Substrate inflexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cells 279, C1345–C1350 (2000).
    Article CAS Google Scholar
  16. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).
    Article CAS Google Scholar
  17. Kong, H. J., Polte, T., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA 102, 4300 (2005).
    Article CAS Google Scholar
  18. Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86, 2530–2537 (2004).
    Article CAS Google Scholar
  19. Itaka, K., Harada, A., Nakamura, K., Kawaguchi, H. & Kataoka, K. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions. Biomacromol. 3, 841–845 (2002).
    Article CAS Google Scholar
  20. Madeira, C., Loura, L. M. S., Aires-Barros, M. R., Fedorov, A. & Prieto, M. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys. J. 85, 3106–3119 (2003).
    Article CAS Google Scholar
  21. Itaka, K., Harada, A., Yamasaki, Y., Nakamura, K., Kawaguchi, H. & Kataoka, K. In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine J. Gene Med. 6, 76–84 (2004).
    Article CAS Google Scholar
  22. Rowley, J. A., Sun, Z. X., Goldman, D. & Mooney, D. J. Biomaterials to spatially regulate cell fate. Adv. Mater. 14, 886–889 (2002).
    Article CAS Google Scholar
  23. Tseng, W. C., Haselton, F. R. & Giorgio, T. D. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta 1445, 53–64 (1999).
    Article CAS Google Scholar
  24. Escriou, V., Carriere, M., Bussone, F., Wils, P. & Scherman, D. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J. Gene Med. 3, 179–187 (2001).
    Article CAS Google Scholar
  25. Rowley, J. A. & Mooney, D. J. Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 55, 503–511 (2001).
    Article Google Scholar
  26. Bonadio, J., Smiley, E., Patil, P. & Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nature Med. 5, 753–759 (1999).
    Article CAS Google Scholar
  27. Huang, Y. C., Cennell, M., Park, Y., Mooney, D. J. & Rice, K. G. Fabrication and in vitro testing of polymeric delivery system for condensed DNA. J. Biomed. Mater. Res. 67A, 1384–1392 (2003).
    Article CAS Google Scholar
  28. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
    Book Google Scholar

Download references