Non-viral gene delivery regulated by stiffness of cell adhesion substrates (original) (raw)
References
Niidome, T. & Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther.9, 1647–1652 (2002). ArticleCAS Google Scholar
Jiao, S. S., Gurevich, V. & Wolff, J. A. Long-term correction of rat model of Parkinsons-disease by gene therapy. Nature362, 450–453 (1993). ArticleCAS Google Scholar
Shea, L. D., Smiley, E., Bonadio, J. & Mooney, D. J. DNA delivery from polymer matrics for tissue engineering. Nature Biotechnol.17, 551–554 (1999). ArticleCAS Google Scholar
Christiano, R. Viral and non-viral vectors for cancer gene therapy. Anticancer Res.18, 3241–3246. (1998). Google Scholar
Brown, M. D., Gschatzlein, A. & Uchegbu, I. F. Gene delivery of synthetic (non viral) carriers, Int. J. Phamaceut.229, 1–21 (2001). ArticleCAS Google Scholar
Schaffer, D. V. & Laffenburger, D. A. Optimization of cell surface binging enhanced efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem.273, 28004–28009 (1998). ArticleCAS Google Scholar
Boussif, O. et al. A versatile vector for gene and nucleotide transfer into cells in culture and in vivo-polyethyleneimine. Proc. Natl Acad. Sci. USA92, 7297–7301 (1995). ArticleCAS Google Scholar
Felgner, P. et al. Lipofection-highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA84, 7413–7417 (1987). ArticleCAS Google Scholar
Adami, R. C. et al. Stability of peptide condensed plasmid DNA formulation. J. Pharmaceut. Sci.87, 678–683 (1998). ArticleCAS Google Scholar
Salem, A. K., Searson, P. C. & Leong, K. W. Multifunctional nanorods for gene delivery. Nature Mater.2, 668–671 (2003). ArticleCAS Google Scholar
Luo, D. & Saltzman, W. M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnol.18, 893–895 (2000). ArticleCAS Google Scholar
Shen, H., Tan, J. & Saltzman, W. M. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Mater.3, 569–574 (2004). ArticleCAS Google Scholar
Galbraith, C. & Sheetz, M. P. Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol.10, 566–571 (1998). ArticleCAS Google Scholar
Pelham, R. J. & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate rigidity. Proc. Natl Acad. Sci. USA94, 13661–13665 (1997). ArticleCAS Google Scholar
Wang, H. B., Dembo, M. & Wang, Y. L. Substrate inflexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cells279, C1345–C1350 (2000). ArticleCAS Google Scholar
Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol.166, 877–887 (2004). ArticleCAS Google Scholar
Kong, H. J., Polte, T., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA102, 4300 (2005). ArticleCAS Google Scholar
Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J.86, 2530–2537 (2004). ArticleCAS Google Scholar
Itaka, K., Harada, A., Nakamura, K., Kawaguchi, H. & Kataoka, K. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions. Biomacromol.3, 841–845 (2002). ArticleCAS Google Scholar
Madeira, C., Loura, L. M. S., Aires-Barros, M. R., Fedorov, A. & Prieto, M. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys. J.85, 3106–3119 (2003). ArticleCAS Google Scholar
Itaka, K., Harada, A., Yamasaki, Y., Nakamura, K., Kawaguchi, H. & Kataoka, K. In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine J. Gene Med.6, 76–84 (2004). ArticleCAS Google Scholar
Rowley, J. A., Sun, Z. X., Goldman, D. & Mooney, D. J. Biomaterials to spatially regulate cell fate. Adv. Mater.14, 886–889 (2002). ArticleCAS Google Scholar
Tseng, W. C., Haselton, F. R. & Giorgio, T. D. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta1445, 53–64 (1999). ArticleCAS Google Scholar
Escriou, V., Carriere, M., Bussone, F., Wils, P. & Scherman, D. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J. Gene Med.3, 179–187 (2001). ArticleCAS Google Scholar
Rowley, J. A. & Mooney, D. J. Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res.55, 503–511 (2001). Article Google Scholar
Bonadio, J., Smiley, E., Patil, P. & Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nature Med.5, 753–759 (1999). ArticleCAS Google Scholar
Huang, Y. C., Cennell, M., Park, Y., Mooney, D. J. & Rice, K. G. Fabrication and in vitro testing of polymeric delivery system for condensed DNA. J. Biomed. Mater. Res.67A, 1384–1392 (2003). ArticleCAS Google Scholar
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999). Book Google Scholar