The emergence of spin electronics in data storage (original) (raw)
References
Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D35, R157–R167 (2002). CAS Google Scholar
Mott, N. Electrons in transition metals. Adv. Phys.13, 325–422 (1964). CAS Google Scholar
Fert, A. & Campbell, I. A. Two-current conduction in nickel. Phys. Rev. Lett.21, 1190–1192 (1968). CAS Google Scholar
Fert, A. & Campbell, I. Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F6, 849–871 (1976). CAS Google Scholar
Fert, A., Duvail, J. & Valet, T. Spin relaxation effects in the perpendicular magnetoresistance of magnetic multilayers. Phys. Rev. B52, 6513–6521 (1995). CAS Google Scholar
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett.61, 2472–2475 (1988). CAS Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B39, 4828–4830 (1989). CAS Google Scholar
Levy, P. M. & Mertig, I. in Spin Dependent Transport in Magnetic Nanostructures (eds Maekawa, S. & Shinjo, T.) Ch. 2, 47–112 (CRC, Boca Raton, 2002). Google Scholar
Fert, A., Barthélémy, A. & Petroff, F. in Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (eds Mills, D. M. & Bland, J. A. C.) Ch. 6 (Elsevier, Amsterdam, 2006). Google Scholar
Grünberg, P. Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components. US patent 4,949,039 (1990).
Dieny, B. et al. Magnetoresistive sensor based on the spin valve effect. US patent 5,206,590 (1993).
Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B43, 1297–1300 (1991). CAS Google Scholar
Daughton, J. M. Magnetic tunneling applied to memory. J. Appl. Phys.81, 3758–3763 (1997). CAS Google Scholar
Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B48, 7099–7113 (1993). CAS Google Scholar
Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B62, R4790–R4793 (2000). CAS Google Scholar
Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B64, 184420 (2001). Google Scholar
Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature410, 345–348 (2001). CAS Google Scholar
Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett.56, 665–667 (1990). CAS Google Scholar
Gijs, M. A. M., Lenczowski, S. K. J. & Giesbers, J. B. Perpendicular giant magnetoresistance of microstructured Fe/Cr magnetic multilayers from 4.2 to 300 K. Phys. Rev. Lett.70, 3343–3346 (1993). CAS Google Scholar
Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater.200, 274–289 (1999). CAS Google Scholar
Fert, A. & Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater.200, 338–358 (1999). CAS Google Scholar
Takagishi, M. et al. The applicability of CPP-GMR heads for magnetic recording. IEEE Trans. Magn.38, 2277–2282 (2002). CAS Google Scholar
Childress, J. et al. Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans. Magn.42, 2444–2446 (2006). CAS Google Scholar
Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A54, 225–226 (1975). Google Scholar
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett.74, 3273–3276 (1995). CAS Google Scholar
Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater.139, L231–L234 (1995). CAS Google Scholar
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater.3, 862–867 (2004). CAS Google Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater.3, 868–871 (2004). CAS Google Scholar
Butler, W. H., Zhang, X., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B63, 054416 (2001). Google Scholar
Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B63, 220403 (2001). Google Scholar
Lee, Y. M., Hayakawa, J., Ikeda, S., Matsukura, F. & Ohno, H. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett.90, 212507 (2007). Google Scholar
Mao, S. et al. Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in2. IEEE Trans. Magn.42, 97–102 (2006). Google Scholar
Engel, B. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn.41, 132–136 (2005). Google Scholar
DeBrosse, J. et al. A high-speed 128-kb MRAM core for future universal memory applications. IEEE J. Solid-State Circ.39, 678–683 (2004). Google Scholar
Brown, W. F. Thermal fluctuations of a single-domain particle. Phys. Rev.130, 1677–1686 (1963). Google Scholar
Néel, L. Anisotropie superficielle et surstructures d'orientation magnétique. J. Phys. Rad.15, 225–239 (1954). Google Scholar
Gradmann, U. & Müller, J. Flat ferromagnetic, epitaxial 48Ni/52Fe(111) films of few atomic layers. Phys. Status Solidi B27, 313–324 (1968). CAS Google Scholar
Carcia, P. F., Meinhaldt, A. D. & Suna, A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett.47, 178–180 (1985). CAS Google Scholar
Chappert, C., Renard, D., Beauvillain, P. & Renard, J. Ferromagnetism of very thin films of nickel and cobalt. J. Magn. Magn. Mater.54–57, 795–796 (1986). Google Scholar
Daalderop, G. H. O., Kelly, P. J. & den Broeder, F. J. A. Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett.68, 682–685 (1992). CAS Google Scholar
Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev.102, 1413–1414 (1956). Google Scholar
Nogues, J. et al. Exchange bias in nanostructures. Phys. Rep.422, 65–117 (2005). Google Scholar
Prejbeanu, I. et al. Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn.40, 2625–2627 (2004). Google Scholar
Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature423, 850–853 (2003). CAS Google Scholar
Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett.57, 2442–2445 (1986). Google Scholar
Majkrzak, C. F. et al. Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. Phys. Rev. Lett.56, 2700–2703 (1986). CAS Google Scholar
Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett.64, 2304–2307 (1990). CAS Google Scholar
Bruno, P. & Chappert, C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett.67, 1602–1605 (1991). CAS Google Scholar
Bruno, P. Theory of interlayer magnetic coupling. Phys. Rev. B52, 411–439 (1995). CAS Google Scholar
Margulies, D. T., Berger, A., Moser, A., Schabes, M. E. & Fullerton, E. E. The energy barriers in antiferromagnetically coupled media. Appl. Phys. Lett.82, 3701–3703 (2003). CAS Google Scholar
Savchenko, L., Engel, B. N., Rizzo, N. D., Deherrera, M. F. & Janesky J. A. Method of writing to scalable magnetoresistance random access memory element. US patent 6,545,906B1 (2003).
Weller, D. et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn.36, 10–15 (2000). CAS Google Scholar
Durlam, M. et al. Low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects. Symp. VLSI Techn. Dig., 158–161 (2002).
Worledge, D. C. Spin flop switching for magnetic random access memory. Appl. Phys. Lett.84, 4559–4561 (2004). CAS Google Scholar
Daughton, J. M. & Pohm, A. V. Design of Curie point written magnetoresistance random access memory cells. J. Appl. Phys.93, 7304–7306 (2003). CAS Google Scholar
Rizzo, N. D. & Engel, B. N. MRAM write apparatus and method. US patent 6,351,409 (2002). Google Scholar
Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater.2, 524–527 (2003). CAS Google Scholar
Nembach, H. T. et al. Microwave assisted switching in a Ni81Fe19 ellipsoid. Appl. Phys. Lett.90, 062503 (2007). Google Scholar
Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.159, L1–L7 (1996). CAS Google Scholar
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B54, 9353–9358 (1996). CAS Google Scholar
Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph, D. C. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett.77, 3809–3811 (2000). CAS Google Scholar
Berger, L. Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J. Phys. Chem. Solids35, 947–956 (1974). CAS Google Scholar
Freitas, P. P. & Berger, L. Observation of s–d exchange force between domain walls and electric current in very thin Permalloy films. J. Appl. Phys.57, 1266–1269 (1985). CAS Google Scholar
Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B39, 6995–7002 (1989). CAS Google Scholar
Stiles, M. & Miltat, J. in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006) Google Scholar
Sun, J. Z. Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B62, 570–578 (2000). CAS Google Scholar
Ralph, D. & Buhrman, R., in Concepts in Spintronics (ed. Maekawa, S.) (Oxford Univ. Press, 2006) Google Scholar
Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett.84, 3118–3120 (2004). CAS Google Scholar
Hayakawa, J. et al. Current-induced magnetization switching in MgO barrier based magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer. Jpn. J. Appl. Phys.45, L1057–L1060 (2006). CAS Google Scholar
Hosomi, M. et al. Novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. IEDM Tech. Dig. 459–462 (2005).
Kawahara, T. et al. 2Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read. ISSCC Dig. Tech. Papers, 480–481 (2007).
Jung, S. et al. Three dimensionally stacked NAND Flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node. IEDM Tech. Dig., 1–4 (2006).
Ito, K., Devolder, T., Chappert, C., Carey, M. J. & Katine, J. A. Micromagnetic simulation of spin transfer torque switching combined with precessional motion from a hard axis magnetic field. Appl. Phys. Lett.89, 252509 (2006). Google Scholar
Devolder, T., Chappert, C. & Ito, K. Sub-ns spin-transfer switching: compared benefits of free layer biasing and pinned layer biasing. Phys. Rev. B75, 224430 (2007). Google Scholar
Sakimura, N. et al. A 512 kb cross-point cell MRAM. ISSCC Dig. Tech. Papers, 278–279 (2003).
Tanizaki, H. et al. A high-density and high-speed 1T-4MTJ MRAM with voltage offset self-reference sensing scheme. Asian Solid-State Circuits Conf. Dig. Tech. Papers, 303–306 (2006).
Leuschner, R. et al. Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node. IEDM Tech. Dig., 1–4 (2006).
Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunnelling experiments. Appl. Phys. Lett.82, 233–235 (2003). CAS Google Scholar
Ishikawa, T. et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier. Appl. Phys. Lett.89, 192505 (2006). Google Scholar
Marukame, T., Ishikawa, T., Matsuda, K., Uemura, T. & Yamamoto, M. High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co2Cr0.6Fe0.4Al thin film. Appl. Phys. Lett.88, 262503 (2006). Google Scholar
Chiba, D., Sato, Y., Kita, T., Matsukura, F. & Ohno, H. Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction. Phys. Rev. Lett.93, 216602 (2004). CAS Google Scholar
Elsen, M. Spin transfer experiments on (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As tunnel junctions. Phys. Rev. B73, 035303 (2006). Google Scholar
Gould, C. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett.93, 117203 (2004). CAS Google Scholar
Gould, C., Schmidt, G. & Molenkamp, L. W. Tunneling anisotropic magnetoresistance-based devices. IEEE Trans. Electron Dev.54, 977–983 (2007). CAS Google Scholar
Enaya, H., Semenov, Y. G., Kim, K. W. & Zavada, J. M. Electrical manipulation of nonvolatile spin cell based on diluted magnetic semiconductor quantum dots. IEEE Trans. Electron Dev.54, 1032–1039 (2007). Google Scholar
LeClair, P. et al. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett.80, 625–627 (2002). CAS Google Scholar
Monsma, D. J., Lodder, J. C., Popma, T. J. A. & Dieny, B. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett.74, 5260–5263 (1995). CAS Google Scholar
van Dijken, S., Jiang, X. & Parkin, S. S. P. Room temperature operation of a high output current magnetic tunnel transistor. Appl. Phys. Lett.80, 3364–3366 (2002). CAS Google Scholar
Hehn, M., Montaigne, F. & Schuhl, A. Hot-electron three-terminal devices based on magnetic tunnel junction stacks. Phys. Rev. B66, 144411 (2002). Google Scholar
Hubert, A. & Schäfer, R. Magnetic Domains (Springer, Berlin, 1998). Google Scholar
Allwood, D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science296, 2003–2006 (2002). CAS Google Scholar
Allwood, D. A. et al. Magnetic domain-wall logic. Science309, 1688–1692 (2005). CAS Google Scholar
Cowburn, R. P. & Allwood, D. A. Multiple layer magnetic logic memory device. UK patent GB2,430,318A (2007).
Parkin, S. S. P. Shiftable magnetic shift register and method using the same. US patent 6,834,005B1 (2004).
Cros, V., Grollier, J., Munoz Sanchez, M., Fert, A. & Nguyen Van Dau, F. Spin electronics device. Patent WO 2006 /064022 (2006).
Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett.92, 086601 (2004). Google Scholar
Li, Z. & Zhang, S. Domain-wall dynamics and spin-wave excitations with spin-transfer torques. Phys. Rev. Lett.92, 207203 (2004). CAS Google Scholar
Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett.83, 509 (2003). CAS Google Scholar
Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett.92, 077205 (2004). CAS Google Scholar
Ravelosona, D., Lacour, D., Katine, J. A., Terris, B. D. & Chappert, C. Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. Phys. Rev. Lett.95, 117203 (2005). CAS Google Scholar
Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature428, 539–542 (2004). CAS Google Scholar
Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett.69, 990–996 (2005). CAS Google Scholar
Piechon, F. & Thiaville, A. Spin transfer torque in continuous textures: Semiclassical Boltzmann approach. Phys. Rev. B75, 174414 (2007). Google Scholar
Himeno, A. et al. Dynamics of a magnetic domain wall in magnetic wires with an artificial neck. J. Appl. Phys.93, 8430–8432 (2003). CAS Google Scholar
Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett.97, 207205 (2006). Google Scholar
Allwood, D. A., Xiong, G. & Cowburn, R. P. Domain wall diodes in ferromagnetic planar nanowires. Appl. Phys. Lett.85, 2848–2853 (2004). CAS Google Scholar
Faulkner, C. C. et al. Artificial domain wall nanotraps in Ni81Fe19 wires. J. Appl. Phys.95, 6717–6719 (2004). CAS Google Scholar
Klaui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett.95, 026601 (2005). CAS Google Scholar
Klaui, M. et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appl. Phys. Lett.88, 232507 (2006). Google Scholar
He, J., Li, Z. & Zhang, S. Current-driven vortex domain wall dynamics by micromagnetic simulations. Phys. Rev. B73, 184408 (2006). Google Scholar
Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature432, 203–206 (2004). CAS Google Scholar
Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature443, 197–200 (2006). CAS Google Scholar
Thomas, L. et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science315, 1553–1556 (2007). CAS Google Scholar
Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater.2, 521–523 (2003). CAS Google Scholar
Lim, C. K. et al. Domain wall displacement induced by subnanosecond pulsed current. Appl. Phys. Lett.84, 2820–2822 (2004). CAS Google Scholar
Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett.98, 037204. (2007). Google Scholar
Yamanouchi, M., Chiba, D., Matsukura, F., Dietl, T. & Ohno, H. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett.96, 096601 (2006). CAS Google Scholar
Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett.97, 107204 (2006). Google Scholar
Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science287, 1466–1468 (2000). CAS Google Scholar
Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science311, 205–208 (2006). CAS Google Scholar
Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature425, 485–487 (2003). CAS Google Scholar
Black, W. C. J. & Das, B. Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices. J. Appl. Phys.87, 6674–6679 (2000). CAS Google Scholar
Zhao, W. et al. Integration of Spin-RAM technology in FPGA circuits. Proc. ICSICT 799–802 (2006).
Min, B., Motohashi, K., Lodder, C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater.5, 817–822 (2006). CAS Google Scholar
Hall, K. C., Lau, W. H., Gundogdu, K., Flatte, M. E. & Boggess, T. F. Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett.83, 2937–2939 (2003). CAS Google Scholar
Hall, K. C. & Flatte, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett.88, 162503 (2006). Google Scholar
Tanaka, M. & Sugahara, S. MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron Dev.54, 961–976 (2007). CAS Google Scholar
Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science306, 86–89 (2004). CAS Google Scholar
Sahoo, S., Kontos, T., Schonenberger, C. & Surgers, C. Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl. Phys. Lett.86, 112109 (2005). Google Scholar
Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature445, 410–413 (2007). CAS Google Scholar
Romeike, C., Wegewijs, M. R., Ruben, M., Wenzel, W. & Schoeller, H. Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B75, 064404 (2007). Google Scholar
Fert, A., George, J., Jaffres, H. & Mattana, R. Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev.54, 921–932 (2007). CAS Google Scholar
Kimura, T., Hamrle, J. & Otani, Y. Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures. Phys. Rev. B72, 014461 (2005). Google Scholar
Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature447, 573–576 (2007). CAS Google Scholar
Khomskii, D. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater.306, 1–8 (2006). CAS Google Scholar
Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett.5, 1793–1796 (2005). CAS Google Scholar
Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater.5, 823–829 (2006). CAS Google Scholar
Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett.89, 162505 (2006). Google Scholar
Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett.97, 077201 (2006). CAS Google Scholar
Kimura, T., Otani, Y. & Hamrle, J. Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett.96, 037201 (2006). CAS Google Scholar