The emergence of spin electronics in data storage (original) (raw)

References

  1. Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–R167 (2002).
    CAS Google Scholar
  2. Mott, N. Electrons in transition metals. Adv. Phys. 13, 325–422 (1964).
    CAS Google Scholar
  3. Fert, A. & Campbell, I. A. Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190–1192 (1968).
    CAS Google Scholar
  4. Fert, A. & Campbell, I. Electrical resistivity of ferromagnetic nickel and iron based alloys. J. Phys. F 6, 849–871 (1976).
    CAS Google Scholar
  5. Fert, A., Duvail, J. & Valet, T. Spin relaxation effects in the perpendicular magnetoresistance of magnetic multilayers. Phys. Rev. B 52, 6513–6521 (1995).
    CAS Google Scholar
  6. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
    CAS Google Scholar
  7. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
    CAS Google Scholar
  8. Levy, P. M. & Mertig, I. in Spin Dependent Transport in Magnetic Nanostructures (eds Maekawa, S. & Shinjo, T.) Ch. 2, 47–112 (CRC, Boca Raton, 2002).
    Google Scholar
  9. Fert, A., Barthélémy, A. & Petroff, F. in Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures (eds Mills, D. M. & Bland, J. A. C.) Ch. 6 (Elsevier, Amsterdam, 2006).
    Google Scholar
  10. Grünberg, P. Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components. US patent 4,949,039 (1990).
  11. Dieny, B. et al. Magnetoresistive sensor based on the spin valve effect. US patent 5,206,590 (1993).
  12. Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).
    CAS Google Scholar
  13. Daughton, J. M. Magnetic tunneling applied to memory. J. Appl. Phys. 81, 3758–3763 (1997).
    CAS Google Scholar
  14. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).
    CAS Google Scholar
  15. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).
    CAS Google Scholar
  16. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).
    Google Scholar
  17. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).
    CAS Google Scholar
  18. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
    CAS Google Scholar
  19. Gijs, M. A. M., Lenczowski, S. K. J. & Giesbers, J. B. Perpendicular giant magnetoresistance of microstructured Fe/Cr magnetic multilayers from 4.2 to 300 K. Phys. Rev. Lett. 70, 3343–3346 (1993).
    CAS Google Scholar
  20. Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).
    CAS Google Scholar
  21. Fert, A. & Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater. 200, 338–358 (1999).
    CAS Google Scholar
  22. Takagishi, M. et al. The applicability of CPP-GMR heads for magnetic recording. IEEE Trans. Magn. 38, 2277–2282 (2002).
    CAS Google Scholar
  23. Childress, J. et al. Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans. Magn. 42, 2444–2446 (2006).
    CAS Google Scholar
  24. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
    Google Scholar
  25. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
    CAS Google Scholar
  26. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).
    CAS Google Scholar
  27. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).
    CAS Google Scholar
  28. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).
    CAS Google Scholar
  29. Butler, W. H., Zhang, X., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
    Google Scholar
  30. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).
    Google Scholar
  31. Lee, Y. M., Hayakawa, J., Ikeda, S., Matsukura, F. & Ohno, H. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 212507 (2007).
    Google Scholar
  32. Mao, S. et al. Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in2. IEEE Trans. Magn. 42, 97–102 (2006).
    Google Scholar
  33. Engel, B. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).
    Google Scholar
  34. DeBrosse, J. et al. A high-speed 128-kb MRAM core for future universal memory applications. IEEE J. Solid-State Circ. 39, 678–683 (2004).
    Google Scholar
  35. Brown, W. F. Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963).
    Google Scholar
  36. Néel, L. Anisotropie superficielle et surstructures d'orientation magnétique. J. Phys. Rad. 15, 225–239 (1954).
    Google Scholar
  37. Gradmann, U. & Müller, J. Flat ferromagnetic, epitaxial 48Ni/52Fe(111) films of few atomic layers. Phys. Status Solidi B 27, 313–324 (1968).
    CAS Google Scholar
  38. Carcia, P. F., Meinhaldt, A. D. & Suna, A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett. 47, 178–180 (1985).
    CAS Google Scholar
  39. Chappert, C., Renard, D., Beauvillain, P. & Renard, J. Ferromagnetism of very thin films of nickel and cobalt. J. Magn. Magn. Mater. 54–57, 795–796 (1986).
    Google Scholar
  40. Daalderop, G. H. O., Kelly, P. J. & den Broeder, F. J. A. Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett. 68, 682–685 (1992).
    CAS Google Scholar
  41. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).
    Google Scholar
  42. Nogues, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).
    Google Scholar
  43. Prejbeanu, I. et al. Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40, 2625–2627 (2004).
    Google Scholar
  44. Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).
    CAS Google Scholar
  45. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).
    Google Scholar
  46. Majkrzak, C. F. et al. Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. Phys. Rev. Lett. 56, 2700–2703 (1986).
    CAS Google Scholar
  47. Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).
    CAS Google Scholar
  48. Bruno, P. & Chappert, C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 67, 1602–1605 (1991).
    CAS Google Scholar
  49. Bruno, P. Theory of interlayer magnetic coupling. Phys. Rev. B 52, 411–439 (1995).
    CAS Google Scholar
  50. Margulies, D. T., Berger, A., Moser, A., Schabes, M. E. & Fullerton, E. E. The energy barriers in antiferromagnetically coupled media. Appl. Phys. Lett. 82, 3701–3703 (2003).
    CAS Google Scholar
  51. Savchenko, L., Engel, B. N., Rizzo, N. D., Deherrera, M. F. & Janesky J. A. Method of writing to scalable magnetoresistance random access memory element. US patent 6,545,906B1 (2003).
  52. Weller, D. et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000).
    CAS Google Scholar
  53. Durlam, M. et al. Low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects. Symp. VLSI Techn. Dig., 158–161 (2002).
  54. Worledge, D. C. Spin flop switching for magnetic random access memory. Appl. Phys. Lett. 84, 4559–4561 (2004).
    CAS Google Scholar
  55. Daughton, J. M. & Pohm, A. V. Design of Curie point written magnetoresistance random access memory cells. J. Appl. Phys. 93, 7304–7306 (2003).
    CAS Google Scholar
  56. Rizzo, N. D. & Engel, B. N. MRAM write apparatus and method. US patent 6,351,409 (2002).
    Google Scholar
  57. Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater. 2, 524–527 (2003).
    CAS Google Scholar
  58. Nembach, H. T. et al. Microwave assisted switching in a Ni81Fe19 ellipsoid. Appl. Phys. Lett. 90, 062503 (2007).
    Google Scholar
  59. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
    CAS Google Scholar
  60. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
    CAS Google Scholar
  61. Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph, D. C. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809–3811 (2000).
    CAS Google Scholar
  62. Berger, L. Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J. Phys. Chem. Solids 35, 947–956 (1974).
    CAS Google Scholar
  63. Freitas, P. P. & Berger, L. Observation of s–d exchange force between domain walls and electric current in very thin Permalloy films. J. Appl. Phys. 57, 1266–1269 (1985).
    CAS Google Scholar
  64. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).
    CAS Google Scholar
  65. Stiles, M. & Miltat, J. in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006)
    Google Scholar
  66. Sun, J. Z. Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).
    CAS Google Scholar
  67. Ralph, D. & Buhrman, R., in Concepts in Spintronics (ed. Maekawa, S.) (Oxford Univ. Press, 2006)
    Google Scholar
  68. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).
    CAS Google Scholar
  69. Hayakawa, J. et al. Current-induced magnetization switching in MgO barrier based magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer. Jpn. J. Appl. Phys. 45, L1057–L1060 (2006).
    CAS Google Scholar
  70. Hosomi, M. et al. Novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. IEDM Tech. Dig. 459–462 (2005).
  71. Kawahara, T. et al. 2Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read. ISSCC Dig. Tech. Papers, 480–481 (2007).
  72. Jung, S. et al. Three dimensionally stacked NAND Flash memory technology using stacking single crystal Si layers on ILD and TANOS structure for beyond 30 nm node. IEDM Tech. Dig., 1–4 (2006).
  73. Ito, K., Devolder, T., Chappert, C., Carey, M. J. & Katine, J. A. Micromagnetic simulation of spin transfer torque switching combined with precessional motion from a hard axis magnetic field. Appl. Phys. Lett. 89, 252509 (2006).
    Google Scholar
  74. Devolder, T., Chappert, C. & Ito, K. Sub-ns spin-transfer switching: compared benefits of free layer biasing and pinned layer biasing. Phys. Rev. B 75, 224430 (2007).
    Google Scholar
  75. Sakimura, N. et al. A 512 kb cross-point cell MRAM. ISSCC Dig. Tech. Papers, 278–279 (2003).
  76. Tanizaki, H. et al. A high-density and high-speed 1T-4MTJ MRAM with voltage offset self-reference sensing scheme. Asian Solid-State Circuits Conf. Dig. Tech. Papers, 303–306 (2006).
  77. Leuschner, R. et al. Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node. IEDM Tech. Dig., 1–4 (2006).
  78. Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunnelling experiments. Appl. Phys. Lett. 82, 233–235 (2003).
    CAS Google Scholar
  79. Ishikawa, T. et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier. Appl. Phys. Lett. 89, 192505 (2006).
    Google Scholar
  80. Marukame, T., Ishikawa, T., Matsuda, K., Uemura, T. & Yamamoto, M. High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co2Cr0.6Fe0.4Al thin film. Appl. Phys. Lett. 88, 262503 (2006).
    Google Scholar
  81. Chiba, D., Sato, Y., Kita, T., Matsukura, F. & Ohno, H. Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As tunnel junction. Phys. Rev. Lett. 93, 216602 (2004).
    CAS Google Scholar
  82. Elsen, M. Spin transfer experiments on (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As tunnel junctions. Phys. Rev. B 73, 035303 (2006).
    Google Scholar
  83. Gould, C. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).
    CAS Google Scholar
  84. Gould, C., Schmidt, G. & Molenkamp, L. W. Tunneling anisotropic magnetoresistance-based devices. IEEE Trans. Electron Dev. 54, 977–983 (2007).
    CAS Google Scholar
  85. Enaya, H., Semenov, Y. G., Kim, K. W. & Zavada, J. M. Electrical manipulation of nonvolatile spin cell based on diluted magnetic semiconductor quantum dots. IEEE Trans. Electron Dev. 54, 1032–1039 (2007).
    Google Scholar
  86. LeClair, P. et al. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett. 80, 625–627 (2002).
    CAS Google Scholar
  87. Monsma, D. J., Lodder, J. C., Popma, T. J. A. & Dieny, B. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett. 74, 5260–5263 (1995).
    CAS Google Scholar
  88. van Dijken, S., Jiang, X. & Parkin, S. S. P. Room temperature operation of a high output current magnetic tunnel transistor. Appl. Phys. Lett. 80, 3364–3366 (2002).
    CAS Google Scholar
  89. Hehn, M., Montaigne, F. & Schuhl, A. Hot-electron three-terminal devices based on magnetic tunnel junction stacks. Phys. Rev. B 66, 144411 (2002).
    Google Scholar
  90. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, Berlin, 1998).
    Google Scholar
  91. Allwood, D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002).
    CAS Google Scholar
  92. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).
    CAS Google Scholar
  93. Cowburn, R. P. & Allwood, D. A. Multiple layer magnetic logic memory device. UK patent GB2,430,318A (2007).
  94. Parkin, S. S. P. Shiftable magnetic shift register and method using the same. US patent 6,834,005B1 (2004).
  95. Cros, V., Grollier, J., Munoz Sanchez, M., Fert, A. & Nguyen Van Dau, F. Spin electronics device. Patent WO 2006 /064022 (2006).
  96. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).
    Google Scholar
  97. Li, Z. & Zhang, S. Domain-wall dynamics and spin-wave excitations with spin-transfer torques. Phys. Rev. Lett. 92, 207203 (2004).
    CAS Google Scholar
  98. Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509 (2003).
    CAS Google Scholar
  99. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).
    CAS Google Scholar
  100. Ravelosona, D., Lacour, D., Katine, J. A., Terris, B. D. & Chappert, C. Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. Phys. Rev. Lett. 95, 117203 (2005).
    CAS Google Scholar
  101. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).
    CAS Google Scholar
  102. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).
    CAS Google Scholar
  103. Piechon, F. & Thiaville, A. Spin transfer torque in continuous textures: Semiclassical Boltzmann approach. Phys. Rev. B 75, 174414 (2007).
    Google Scholar
  104. Himeno, A. et al. Dynamics of a magnetic domain wall in magnetic wires with an artificial neck. J. Appl. Phys. 93, 8430–8432 (2003).
    CAS Google Scholar
  105. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).
    Google Scholar
  106. Allwood, D. A., Xiong, G. & Cowburn, R. P. Domain wall diodes in ferromagnetic planar nanowires. Appl. Phys. Lett. 85, 2848–2853 (2004).
    CAS Google Scholar
  107. Faulkner, C. C. et al. Artificial domain wall nanotraps in Ni81Fe19 wires. J. Appl. Phys. 95, 6717–6719 (2004).
    CAS Google Scholar
  108. Klaui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601 (2005).
    CAS Google Scholar
  109. Klaui, M. et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appl. Phys. Lett. 88, 232507 (2006).
    Google Scholar
  110. He, J., Li, Z. & Zhang, S. Current-driven vortex domain wall dynamics by micromagnetic simulations. Phys. Rev. B 73, 184408 (2006).
    Google Scholar
  111. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).
    CAS Google Scholar
  112. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).
    CAS Google Scholar
  113. Thomas, L. et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007).
    CAS Google Scholar
  114. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).
    CAS Google Scholar
  115. Lim, C. K. et al. Domain wall displacement induced by subnanosecond pulsed current. Appl. Phys. Lett. 84, 2820–2822 (2004).
    CAS Google Scholar
  116. Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204. (2007).
    Google Scholar
  117. Yamanouchi, M., Chiba, D., Matsukura, F., Dietl, T. & Ohno, H. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).
    CAS Google Scholar
  118. Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).
    Google Scholar
  119. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).
    CAS Google Scholar
  120. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).
    CAS Google Scholar
  121. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).
    CAS Google Scholar
  122. Black, W. C. J. & Das, B. Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices. J. Appl. Phys. 87, 6674–6679 (2000).
    CAS Google Scholar
  123. Zhao, W. et al. Integration of Spin-RAM technology in FPGA circuits. Proc. ICSICT 799–802 (2006).
  124. Min, B., Motohashi, K., Lodder, C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).
    CAS Google Scholar
  125. Hall, K. C., Lau, W. H., Gundogdu, K., Flatte, M. E. & Boggess, T. F. Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83, 2937–2939 (2003).
    CAS Google Scholar
  126. Hall, K. C. & Flatte, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).
    Google Scholar
  127. Tanaka, M. & Sugahara, S. MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron Dev. 54, 961–976 (2007).
    CAS Google Scholar
  128. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).
    CAS Google Scholar
  129. Sahoo, S., Kontos, T., Schonenberger, C. & Surgers, C. Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl. Phys. Lett. 86, 112109 (2005).
    Google Scholar
  130. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).
    CAS Google Scholar
  131. Romeike, C., Wegewijs, M. R., Ruben, M., Wenzel, W. & Schoeller, H. Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 75, 064404 (2007).
    Google Scholar
  132. Fert, A., George, J., Jaffres, H. & Mattana, R. Semiconductors between spin-polarized sources and drains. IEEE Trans. Electron Dev. 54, 921–932 (2007).
    CAS Google Scholar
  133. Kimura, T., Hamrle, J. & Otani, Y. Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures. Phys. Rev. B 72, 014461 (2005).
    Google Scholar
  134. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).
    CAS Google Scholar
  135. Khomskii, D. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).
    CAS Google Scholar
  136. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).
    CAS Google Scholar
  137. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).
    CAS Google Scholar
  138. Chiba, D., Matsukura, F. & Ohno, H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett. 89, 162505 (2006).
    Google Scholar
  139. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).
    CAS Google Scholar
  140. Kimura, T., Otani, Y. & Hamrle, J. Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006).
    CAS Google Scholar

Download references