Patterning surfaces with functional polymers (original) (raw)

References

  1. Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003).
    CAS Google Scholar
  2. Black, C. T. et al. Polymer self assembly in semiconductor microelectronics. IBM J. Res. Dev. 51, 605–633 (2007).
    CAS Google Scholar
  3. Singh, T. B. & Sariciftci, N. S. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36, 199–230 (2006).
    CAS Google Scholar
  4. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).
    CAS Google Scholar
  5. Thery, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).
    CAS Google Scholar
  6. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).
    CAS Google Scholar
  7. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: Periodic arrays of ∼1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).
    CAS Google Scholar
  8. Kane, R. S., Cohen, R. E. & Silbey, R. Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem. Mater. 8, 1919–1924 (1996).
    CAS Google Scholar
  9. Valkama, S. et al. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nature Mater. 3, 872–876 (2004).
    CAS Google Scholar
  10. Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).
    CAS Google Scholar
  11. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).
    CAS Google Scholar
  12. Seemann, R., Brinkmann, M., Kramer, E. J., Lange, F. F. & Lipowsky, R. Wetting morphologies at microstructured surfaces. Proc. Natl. Acad. Sci. USA 102, 1848–1852 (2005).
    CAS Google Scholar
  13. Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).
    CAS Google Scholar
  14. Li, L. J. & Fourkas, J. T. Multiphoton polymerization. Mater. Today 10, 30–37 (2007).
    Google Scholar
  15. Moon, J. H., Ford, J. & Yang, S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 17, 83–93 (2006).
    CAS Google Scholar
  16. Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).
    CAS Google Scholar
  17. Kelley, T. W. et al. Recent progress in organic electronics: Materials, devices, and processes. Chem. Mater. 16, 4413–4422 (2004).
    CAS Google Scholar
  18. Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 76, 2668–2670 (2000).
    CAS Google Scholar
  19. Bloomstein, T. M. et al. Critical issues in 157 nm lithography. J. Vac. Sci. Technol. B 16, 3154–3157 (1998).
    CAS Google Scholar
  20. Bloomstein, T. M., Marchant, M. F., Deneault, S., Hardy, D. E. & Rothschild, M. 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006).
    CAS Google Scholar
  21. Muller, C. D. et al. Multi-colour organic light-emitting displays by solution processing. Nature 421, 829–833 (2003).
    Google Scholar
  22. Penterman, R., Klink, S. L., de Koning, H., Nisato, G. & Broer, D. J. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417, 55–58 (2002).
    CAS Google Scholar
  23. Wu, H. K., Odom, T. W. & Whitesides, G. M. Reduction photolithography using microlens arrays: Applications in gray scale photolithography. Anal. Chem. 74, 3267–3273 (2002).
    CAS Google Scholar
  24. Revzin, A., Tompkins, R. G. & Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19, 9855–9862 (2003).
    CAS Google Scholar
  25. Koh, W. G., Revzin, A. & Pishko, M. V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).
    CAS Google Scholar
  26. Hoffmann, J., Plotner, M., Kuckling, D. & Fischer, W. J. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens. Actuat. A 77, 139–144 (1999).
    CAS Google Scholar
  27. Lee, M. B. et al. Silicon planar-apertured probe array for high-density near-field optical storage. Appl. Opt. 38, 3566–3571 (1999).
    CAS Google Scholar
  28. Aldred, M. P. et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).
    CAS Google Scholar
  29. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. & Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23, 561–567 (2002).
    CAS Google Scholar
  30. Karp, J. M. et al. A photolithographic method to create cellular micropatterns. Biomaterials 27, 4755–4764 (2006).
    CAS Google Scholar
  31. Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006).
    CAS Google Scholar
  32. Albrecht, D. R., Tsang, V. L., Sah, R. L. & Bhatia, S. N. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).
    CAS Google Scholar
  33. Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods 3, 369–375 (2006).
    CAS Google Scholar
  34. Kato, K., Tanaka, K., Tsuru, S. & Sakai, S. Reflective color display using polymer-dispersed cholesteric liquid-crystal. Jpn. J. Appl. Phys. 33, 2635–2640 (1994).
    CAS Google Scholar
  35. Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Tomlin, D. & Bunning, T. J. Holographic formation of electro-optical polymer-liquid crystal photonic crystals. Adv. Mater. 14, 187–191 (2002).
    CAS Google Scholar
  36. Miklyaev, Y. V. et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284–1286 (2003).
    CAS Google Scholar
  37. Naydenova, I., Mihaylova, E., Martin, S. & Toal, V. Holographic patterning of acrylamide-based photopolymer surface. Opt. Express 13, 4878–4889 (2005).
    CAS Google Scholar
  38. Lai, N. D., Liang, W. P., Lin, J. H., Hsu, C. C. & Lin, C. H. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605–9611 (2005).
    Google Scholar
  39. Gordon, T. J., Yu, J. F., Yang, C. & Holdcroft, S. Direct thermal patterning of a π-conjugated polymer. Chem. Mater. 19, 2155–2161 (2007).
    CAS Google Scholar
  40. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. J. & Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997).
    CAS Google Scholar
  41. Hua, F. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 4, 2467–2471 (2004).
    CAS Google Scholar
  42. Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 19, 495–513 (2007).
    CAS Google Scholar
  43. Stewart, M. D. & Willson, C. G. Imprint materials for nanoscale devices. Mater. Res. Soc. Bull. 30, 947–951 (2005).
    CAS Google Scholar
  44. Pfeiffer, K. et al. Multistep profiles by mix and match of nanoimprint and UV lithography. Microelectron. Eng. 57–8, 381–387 (2001).
    Google Scholar
  45. Behl, M. et al. Towards plastic electronics: Patterning semiconducting polymers by nanoimprint lithography. Adv. Mater. 14, 588–591 (2002).
    CAS Google Scholar
  46. Finder, C. et al. Fluorescence microscopy for quality control in nanoimprint lithography. Microelectron. Eng. 67–8, 623–628 (2003).
    Google Scholar
  47. Li, H. W. & Huck, W. T. S. Ordered block-copolymer assembly using nanoimprint lithography. Nano Lett. 4, 1633–1636 (2004).
    CAS Google Scholar
  48. Schulz, H. et al. New polymer materials for nanoimprinting. J. Vac. Sci. Technol. B 18, 1861–1865 (2000).
    CAS Google Scholar
  49. Nakamatsu, K., Watanabe, K., Tone, K., Namatsu, H. & Matsui, S. Nanoimprint and nanocontact technologies using hydrogen silsesquioxane. J. Vac. Sci. Technol. B 23, 507–512 (2005).
    CAS Google Scholar
  50. Colburn, M. et al. Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers. J. Vac. Sci. Technol. B 19, 2685–2689 (2001).
    CAS Google Scholar
  51. Hagberg, E. C., Malkoch, M., Ling, Y. B., Hawker, C. J. & Carter, K. R. Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. Nano Lett. 7, 233–237 (2007).
    CAS Google Scholar
  52. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).
    CAS Google Scholar
  53. Schmid, G. M. et al. Implementation of an imprint damascene process for interconnect fabrication. J. Vac. Sci. Technol. B 24, 1283–1291 (2006).
    CAS Google Scholar
  54. Mata, A., Fleischman, A. J. & Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 16, 276–284 (2006).
    Google Scholar
  55. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).
    CAS Google Scholar
  56. Li, H. W., Muir, B. V. O., Fichet, G. & Huck, W. T. S. Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir 19, 1963–1965 (2003).
    CAS Google Scholar
  57. Hui, C. Y., Jagota, A., Lin, Y. Y. & Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18, 1394–1407 (2002).
    CAS Google Scholar
  58. Sharpe, R. B. A. et al. Ink dependence of poly(dimethylsiloxane) contamination in microcontact printing. Langmuir 22, 5945–5951 (2006).
    CAS Google Scholar
  59. Workman, R. K. & Manne, S. Molecular transfer and transport in noncovalent microcontact printing. Langmuir 20, 805–815 (2004).
    CAS Google Scholar
  60. Quist, A. P., Pavlovic, E. & Oscarsson, S. Recent advances in microcontact printing. Anal. Bioanal. Chem. 381, 591–600 (2005).
    CAS Google Scholar
  61. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).
    CAS Google Scholar
  62. Shah, R. R. et al. Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules 33, 597–605 (2000).
    CAS Google Scholar
  63. Zhou, F. et al. Fabrication of positively patterned conducting polymer microstructures via one-step electrodeposition. Adv. Mater. 15, 1367–1370 (2003).
    CAS Google Scholar
  64. Jiang, X. P., Clark, S. L. & Hammond, P. T. Side-by-side directed multilayer patterning using surface templates. Adv. Mater. 13, 1669–1673 (2001).
    CAS Google Scholar
  65. Park, J., Kim, Y. S. & Hammond, P. T. Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard molds. Nano Lett. 5, 1347–1350 (2005).
    CAS Google Scholar
  66. Yan, L., Huck, W. T. S., Zhao, X. M. & Whitesides, G. M. Patterning thin films of poly(ethylene imine) on a reactive SAM using microcontact printing. Langmuir 15, 1208–1214 (1999).
    CAS Google Scholar
  67. Zhou, F., Zheng, Z. J., Yu, B., Liu, W. M. & Huck, W. T. S. Multicomponent polymer brushes. J. Am. Chem. Soc. 128, 16253–16258 (2006).
    CAS Google Scholar
  68. Li, D. W. & Guo, L. J. Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping. Appl. Phys. Lett. 88 (2006).
  69. Kumar, G., Wang, Y. C., Co, C. & Ho, C. C. Spatially controlled cell engineering on biomaterials using polyelectrolytes. Langmuir 19, 10550–10556 (2003).
    CAS Google Scholar
  70. Lin, C. C., Co, C. C. & Ho, C. C. Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials 26, 3655–3662 (2005).
    CAS Google Scholar
  71. Nyffenegger, R. M. & Penner, R. M. Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem. Rev. 97, 1195–1230 (1997).
    CAS Google Scholar
  72. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).
    CAS Google Scholar
  73. Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).
    CAS Google Scholar
  74. Hong, S. H. & Mirkin, C. A. A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808–1811 (2000).
    CAS Google Scholar
  75. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).
    CAS Google Scholar
  76. Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc. 127, 11745–11753 (2005).
    CAS Google Scholar
  77. Yang, M., Sheehan, P. E., King, W. P. & Whitman, L. J. Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. J. Am. Chem. Soc. 128, 6774–6775 (2006).
    CAS Google Scholar
  78. Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14, 1474–1477 (2002).
    CAS Google Scholar
  79. McKendry, R. et al. Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography. Nano Lett. 2, 713–716 (2002).
    CAS Google Scholar
  80. Salazar, R. B., Shovsky, A., Schonherr, H. & Vancso, G. J. Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: Deposition of lines of single macromolecules. Small 2, 1274–1282 (2006).
    CAS Google Scholar
  81. Mamin, H. J. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992).
    CAS Google Scholar
  82. Maynor, B. W., Filocamo, S. F., Grinstaff, M. W. & Liu, J. Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc. 124, 522–523 (2002).
    CAS Google Scholar
  83. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45, 7220–7223 (2006).
    CAS Google Scholar
  84. Vettiger, P. et al. The “millipede” - Nanotechnology entering data storage. IEEE T. Nanotechnol. 1, 39–55 (2002).
    Google Scholar
  85. Lee, S. W. et al. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 18, 1133–1136 (2006).
    CAS Google Scholar
  86. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).
    CAS Google Scholar
  87. Bonaccurso, E., Butt, H. J., Hankeln, B., Niesenhaus, B. & Graf, K. Fabrication of microvessels and microlenses from polymers by solvent droplets. Appl. Phys. Lett. 86 (2005).
  88. Sele, C. W., von Werne, T., Friend, R. H. & Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 17, 997–1001 (2005).
    CAS Google Scholar
  89. Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 782–789 (2007).
    CAS Google Scholar
  90. Christanti, Y. & Walker, L. M. Surface tension driven jet break up of strain-hardening polymer solutions. J. Non-Newtonian Fluid Mech. 100, 9–26 (2001).
    CAS Google Scholar
  91. Carter, J. C. et al. Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens. Bioelectron. 21, 1359–1364 (2006).
    CAS Google Scholar
  92. Roth, E. A. et al. Inkjet printing for high-throughput cell patterning. Biomaterials 25, 3707–3715 (2004).
    CAS Google Scholar
  93. Vozzi, G., Previti, A., De Rossi, D. & Ahluwalia, A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 8, 1089–1098 (2002).
    CAS Google Scholar
  94. Vozzi, G., Flaim, C., Ahluwalia, A. & Bhatia, S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24, 2533–2540 (2003).
    CAS Google Scholar
  95. Woodfield, T. B. F. et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4161 (2004).
    CAS Google Scholar
  96. Landers, R., Hubner, U., Schmelzeisen, R. & Mulhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437–4447 (2002).
    CAS Google Scholar
  97. Geng, L. et al. Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J. 11, 90–97 (2005).
    Google Scholar
  98. Gratson, G. M., Xu, M. J. & Lewis, J. A. Microperiodic structures: Direct writing of three-dimensional webs. Nature 428, 386–386 (2004).
    CAS Google Scholar
  99. Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater. 2, 265–271 (2003).
    CAS Google Scholar
  100. Xu, M. J., Gratson, G. M., Duoss, E. B., Shepherd, R. F. & Lewis, J. A. Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 2, 205–209 (2006).
    CAS Google Scholar
  101. Gratson, G. M. et al. Direct-write assembly of three-dimensional photonic crystals: Conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461–465 (2006).
    CAS Google Scholar
  102. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).
    CAS Google Scholar
  103. Endres, M. et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 9, 689–702 (2003).
    CAS Google Scholar
  104. Li, M. Q., Coenjarts, C. A. & Ober, C. K. in Block Copolymers II (ed. Abetz, V.) 183–226 (Advances in Polymer Science Series Vol. 190, Springer, Berlin, 2005).
    Google Scholar
  105. Kim, G. & Libera, M. Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 31, 2569–2577 (1998).
    CAS Google Scholar
  106. Bang, J. et al. Effect of humidity on the ordering of PEO-based copolymer thin films. Macromolecules 40, 7019–7025 (2007).
    CAS Google Scholar
  107. Fasolka, M. J. & Mayes, A. M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).
    CAS Google Scholar
  108. Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).
    CAS Google Scholar
  109. Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001).
    CAS Google Scholar
  110. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).
    CAS Google Scholar
  111. Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).
    CAS Google Scholar
  112. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).
    CAS Google Scholar
  113. Angelescu, D. E. et al. Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv. Mater. 16, 1736–1740 (2004).
    CAS Google Scholar
  114. Osuji, C. et al. Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields. Macromolecules 37, 9903–9908 (2004).
    CAS Google Scholar
  115. Xu, T., Zhu, Y. Q., Gido, S. P. & Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37, 2625–2629 (2004).
    CAS Google Scholar
  116. Harrison, C. et al. Dynamics of pattern coarsening in a two-dimensional smectic system. Phys. Rev. E 66, 011706 (2002).
    Google Scholar
  117. Fukunaga, K., Elbs, H., Magerle, R. & Krausch, G. Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules 33, 947–953 (2000).
    CAS Google Scholar
  118. Du, P. et al. Additive-driven phase-selective chemistry in block copolymer thin films: The convergence of top-down and bottom-up approaches. Adv. Mater. 16, 953–957 (2004).
    CAS Google Scholar
  119. Kim, D. H. et al. Thin films of block copolymers as planar optical waveguides. Adv. Mater. 17, 2442–2446 (2005).
    CAS Google Scholar
  120. Xu, C., Wayland, B. B., Fryd, M., Winey, K. I. & Composto, R. J. pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules 39, 6063–6070 (2006).
    CAS Google Scholar
  121. Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006).
    CAS Google Scholar
  122. Shin, K. et al. A simple route to metal nanodots and nanoporous metal films. Nano Lett. 2, 933–936 (2002).
    CAS Google Scholar
  123. Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).
    CAS Google Scholar
  124. Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001).
    CAS Google Scholar
  125. Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).
    CAS Google Scholar
  126. Chan, V. Z. H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286, 1716–1719 (1999).
    CAS Google Scholar
  127. Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).
    CAS Google Scholar
  128. Kim, H. C. et al. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 13, 795–797 (2001).
    CAS Google Scholar
  129. Xu, T. et al. Block copolymer surface reconstuction: A reversible route to nanoporous films. Adv. Funct. Mater. 13, 698–702 (2003).
    CAS Google Scholar
  130. Hashimoto, T., Tsutsumi, K. & Funaki, Y. Nanoprocessing based on bicontinuous microdomains of block copolymers: Nanochannels coated with metals. Langmuir 13, 6869–6872 (1997).
    CAS Google Scholar
  131. Black, C. T. et al. Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409–411 (2001).
    CAS Google Scholar
  132. Black, C. T. et al. High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors. IEEE Electron Device Lett. 25, 622–624 (2004).
    CAS Google Scholar
  133. Zschech, D. et al. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. Nano Lett. 7, 1516–1520 (2007).
    CAS Google Scholar
  134. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).
    CAS Google Scholar
  135. Kim, D. H., Lin, Z. Q., Kim, H. C., Jeong, U. & Russell, T. P. On the replication of block copolymer templates by poly(dimethylsiloxane) elastomers. Adv. Mater. 15, 811–814 (2003).
    CAS Google Scholar
  136. Temple, K. et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane). Adv. Mater. 15, 297–300 (2003).
    CAS Google Scholar
  137. Kim, D. H., Kim, S. H., Lavery, K. & Russell, T. P. Inorganic nanodots from thin films of block copolymers. Nano Lett. 4, 1841–1844 (2004).
    CAS Google Scholar
  138. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).
    CAS Google Scholar
  139. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).
    CAS Google Scholar
  140. Bodenschatz, E., Pesch, W. & Ahlers, G. Recent developments in Rayleigh-Benard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000).
    Google Scholar
  141. Mitov, Z. & Kumacheva, E. Convection-induced patterns in phase-separating polymeric fluids. Phys. Rev. Lett. 81, 3427–3430 (1998).
    CAS Google Scholar
  142. Xu, S. Q. & Kumacheva, E. Ordered morphologies in polymeric films produced by replication of convection patterns. J. Am. Chem. Soc. 124, 1142–1143 (2002).
    CAS Google Scholar
  143. Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection patterns trapped in the solid state by UV-induced polymerization. Langmuir 16, 7275–7278 (2000).
    Google Scholar
  144. Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules 33, 4972–4978 (2000).
    CAS Google Scholar
  145. Srinivasarao, M., Collings, D., Philips, A. & Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001).
    CAS Google Scholar
  146. Schaffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000).
    CAS Google Scholar

Download references